1
|
Rosen CJ and Klibanski A: Bone, fat, and
body composition: Evolving concepts in the pathogenesis of
osteoporosis. Am J Med. 122:409–414. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kelly OJ, Gilman JC, Kim Y and Ilich JZ:
Long-chain polyunsaturated fatty acids may mutually benefit both
obesity and osteoporosis. Nutr Res. 33:521–533. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Maurin AC, Chavassieux PM, Vericel E and
Meunier PJ: Role of polyunsaturated fatty acids in the inhibitory
effect of human adipocytes on osteoblastic proliferation. Bone.
31:260–266. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sheu Y, Amati F, Schwartz AV, Danielson
ME, Li X, Boudreau R and Cauley JA; Osteoporotic Fractures in Men
(MrOS) Research Group, : Vertebral bone marrow fat, bone mineral
density and diabetes: The Osteoporotic Fractures in Men (MrOS)
study. Bone. 97:299–305. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Scheller EL, Doucette CR, Learman BS,
Cawthorn WP, Khandaker S, Schell B, Wu B, Ding SY, Bredella MA,
Fazeli PK, et al: Region-specific variation in the properties of
skeletal adipocytes reveals regulated and constitutive marrow
adipose tissues. Nat Commun. 6:78082015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bredella MA, Fazeli PK, Miller KK, Misra
M, Torriani M, Thomas BJ, Ghomi RH, Rosen CJ and Klibanski A:
Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol
Metab. 94:2129–2136. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Choi YJ, Song I, Jin Y, Jin HS, Ji HM,
Jeong SY, Won YY and Chung YS: Transcriptional profiling of human
femoral mesenchymal stem cells in osteoporosis and its association
with adipogenesis. Gene. 632:7–15. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Veum VL, Dankel SN, Gjerde J, Nielsen HJ,
Solsvik MH, Haugen C, Christensen BJ, Hoang T, Fadnes DJ, Busch C,
et al: The nuclear receptors NUR77, NURR1 and NOR1 in obesity and
during fat loss. Int J Obes (Lond). 36:1195–1202. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pearen MA and Muscat GE: Minireview:
Nuclear hormone receptor 4A signaling: Implications for metabolic
disease. Mol Endocrinol. 24:1891–1903. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhao Y and Bruemmer D: NR4A orphan nuclear
receptors: Transcriptional regulators of gene expression in
metabolism and vascular biology. Arterioscler Thromb Vasc Biol.
30:1535–1541. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tetradis S, Bezouglaia O and Tsingotjidou
A: Parathyroid hormone induces expression of the nuclear orphan
receptor Nurr1 in bone cells. Endocrinology. 142:663–670. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Tetradis S, Bezouglaia O, Tsingotjidou A
and Vila A: Regulation of the nuclear orphan receptor Nur77 in bone
by parathyroid hormone. Biochem Biophys Res Commun. 281:913–916.
2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Pirih FQ, Nervina JM, Pham L, Aghaloo T
and Tetradis S: Parathyroid hormone induces the nuclear orphan
receptor NOR-1 in osteoblasts. Biochem Biophys Res Commun.
306:144–150. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rajalin AM and Aarnisalo P: Cross-talk
between NR4A orphan nuclear receptors and β-catenin signaling
pathway in osteoblasts. Arch Biochem Biophys. 509:44–51. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Lee SO, Abdelrahim M, Yoon K,
Chintharlapalli S, Papineni S, Kim K, Wang H and Safe S:
Inactivation of the orphan nuclear receptor TR3/Nur77 inhibits
pancreatic cancer cell and tumor growth. Cancer Res. 70:6824–6836.
2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Martin M: Cutadapt removes adapter
sequences from high-throughput sequencing reads. EMBnet J.
17:10–12. 2011. View Article : Google Scholar
|
18
|
Dobin A, Davis CA, Schlesinger F, Drenkow
J, Zaleski C, Jha S, Batut P, Chaisson M and Gingeras TR: STAR:
Ultrafast universal RNA-seq aligner. Bioinformatics. 29:15–21.
2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fu Y, Luo L, Luo N, Zhu X and Garvey WT:
NR4A orphan nuclear receptors modulate insulin action and the
glucose transport system: Potential role in insulin resistance. J
Biol Chem. 282:31525–31533. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Nagai S, Ikeda K, Horie-Inoue K, Takeda S
and Inoue S: Estrogen signaling increases nuclear receptor
subfamily 4 group A member 1 expression and energy production in
skeletal muscle cells. Endocr J. 65:1209–1218. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Qin DD, Yang YF, Pu ZQ, Liu D, Yu C, Gao
P, Chen JC, Zong C, Zhang YC, Li X, et al: NR4A1 retards adipocyte
differentiation or maturation via enhancing GATA2 and p53
expression. J Cell Mol Med. 22:4709–4720. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chao LC, Bensinger SJ, Villanueva CJ,
Wroblewski K and Tontonoz P: Inhibition of adipocyte
differentiation by Nur77, Nurr1, and Nor1. Mol Endocrinol.
22:2596–2608. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Martínez-González J, Rius J, Castelló A,
Cases-Langhoff C and Badimon L: Neuron-derived orphan receptor-1
(NOR-1) modulates vascular smooth muscle cell proliferation. Circ
Res. 92:96–103. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chong ZX, Yeap SK and Ho WY: Transfection
types, methods and strategies: A technical review. PeerJ.
9:e111652021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fumoto T, Yamaguchi T, Hirose F and Osumi
T: Orphan nuclear receptor Nur77 accelerates the initial phase of
adipocyte differentiation in 3T3-L1 cells by promoting mitotic
clonal expansion. J Biochem. 141:181–192. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Scholtysek C, Ipseiz N, Böhm C,
Krishnacoumar B, Stenzel M, Czerwinski T, Palumbo-Zerr K, Rothe T,
Weidner D, Klej A, et al: NR4A1 regulates motility of osteoclast
precursors and serves as target for the modulation of systemic bone
turnover. J Bone Miner Res. 33:2035–2047. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pirih FQ, Aghaloo TL, Bezouglaia O,
Nervina JM and Tetradis S: Parathyroid hormone induces the NR4A
family of nuclear orphan receptors in vivo. Biochem Biophys
Res Commun. 332:494–503. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lee SO, Andey T, Jin UH, Kim K, Singh M
and Safe S: The nuclear receptor TR3 regulates mTORC1 signaling in
lung cancer cells expressing wild-type p53. Oncogene. 31:3265–3276.
2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lee SO, Li X, Hedrick E, Jin UH, Tjalkens
RB, Backos DS, Li L, Zhang Y, Wu Q and Safe S: Diindolylmethane
analogs bind NR4A1 and are NR4A1 antagonists in colon cancer cells.
Mol Endocrinol. 28:1729–1739. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hedrick E, Lee SO, Kim G, Abdelrahim M,
Jin UH, Safe S and Abudayyeh A: Nuclear receptor 4A1 (NR4A1) as a
drug target for renal cell adenocarcinoma. PLoS One.
10:e01283082015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hedrick E, Lee SO, Doddapaneni R, Singh M
and Safe S: NR4A1 antagonists inhibit β1-integrin-dependent breast
cancer cell migration. Mol Cell Biol. 36:1383–1394. 2016.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Regan J and Long F: Notch signaling and
bone remodeling. Curr Osteoporos Rep. 11:126–129. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Engin F, Yao Z, Yang T, Zhou G, Bertin T,
Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE, et al: Dimorphic
effects of Notch signaling in bone homeostasis. Nat Med.
14:299–305. 2008. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Yorgan T, Vollersen N, Riedel C, Jeschke
A, Peters S, Busse B, Amling M and Schinke T: Notch2 inactivation
specifically in osteoblasts (Notch2fl/fl/Runx2-Cre) leads to
increased trabecular bone formation and enhanced osteogenic
capacity, underscoring Notch2 as a key inhibitor of osteoblast
differentiation. Bone. 87:136–146. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Dong Y, Jesse AM, Kohn A, Gunnell LM,
Honjo T, Zuscik MJ, O'Keefe RJ and Hilton MJ: RBPjkappa-dependent
Notch signaling regulates mesenchymal progenitor cell proliferation
and differentiation during skeletal development. Development.
137:1461–1471. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Canalis E, Parker K, Feng JQ and Zanotti
S: Osteoblast lineage-specific effects of notch activation in the
skeleton. Endocrinology. 154:623–634. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Garcés C, Ruiz-Hidalgo MJ, Font de Mora
JF, Park C, Miele L, Goldstein J, Bonvini E, Porrás A and Laborda
J: Notch-1 controls the expression of fatty acid-activated
transcription factors and is required for adipogenesis. J Biol
Chem. 272:29729–29734. 1997. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ross DA, Rao PK and Kadesch T: Dual roles
for the Notch target gene Hes-1 in the differentiation of 3T3-L1
preadipocytes. Mol Cell Biol. 24:3505–3513. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ugarte F, Ryser M, Thieme S, Fierro FA,
Navratiel K, Bornhäuser M and Brenner S: Notch signaling enhances
osteogenic differentiation while inhibiting adipogenesis in primary
human bone marrow stromal cells. Exp Hematol. 37:867–875.e1. 2009.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang X, Bledsoe KL, Graham RP, Asmann YW,
Viswanatha DS, Lewis JE, Lewis JT, Chou MM, Yaszemski MJ, Jen J, et
al: Recurrent PAX3-MAML3 fusion in biphenotypic sinonasal sarcoma.
Nat Genet. 46:666–668. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lin SE, Oyama T, Nagase T, Harigaya K and
Kitagawa M: Identification of new human mastermind proteins defines
a family that consists of positive regulators for notch signaling.
J Biol Chem. 277:50612–50620. 2002. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kannabiran C, Zeng X and Vales LD: The
mammalian transcriptional repressor RBP (CBF1) regulates
interleukin-6 gene expression. Mol Cell Biol. 17:1–9. 1997.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Philips A, Maira M, Mullick A, Chamberland
M, Lesage S, Hugo P and Drouin J: Antagonism between Nur77 and
glucocorticoid receptor for control of transcription. Mol Cell
Biol. 17:5952–5959. 1997. View Article : Google Scholar : PubMed/NCBI
|
44
|
Carpentier R, Sacchetti P, Ségard P,
Staels B and Lefebvre P: The glucocorticoid receptor is a
co-regulator of the orphan nuclear receptor Nurr1. J Neurochem.
104:777–789. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Mullican SE, Zhang S, Konopleva M, Ruvolo
V, Andreeff M, Milbrandt J and Conneely OM: Abrogation of nuclear
receptors Nr4a3 and Nr4a1 leads to development of acute myeloid
leukemia. Nat Med. 13:730–735. 2007. View
Article : Google Scholar : PubMed/NCBI
|
46
|
Bi P, Shan T, Liu W, Yue F, Yang X, Liang
XR, Wang J, Li J, Carlesso N, Liu X, et al: Inhibition of Notch
signaling promotes browning of white adipose tissue and ameliorates
obesity. Nat Med. 20:911–918. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Gaspar RC, Pauli JR, Shulman GI and Muñoz
VR: An update on brown adipose tissue biology: A discussion of
recent findings. Am J Physiol Endocrinol Metab. 320:E488–E495.
2021. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hampton M, Melvin RG and Andrews MT:
Transcriptomic analysis of brown adipose tissue across the
physiological extremes of natural hibernation. PLoS One.
8:e851572013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Cirillo E, Parnell LD and Evelo CT: A
review of pathway-based analysis tools that visualize genetic
variants. Front Genet. 8:1742017. View Article : Google Scholar : PubMed/NCBI
|