Gut‑liver axis in liver disease: From basic science to clinical treatment (Review)
- Authors:
- Jianpeng Wang
- Xinyi Wang
- Enba Zhuo
- Bangjie Chen
- Shixin Chan
-
Affiliations: Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China, Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China, Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China - Published online on: October 23, 2024 https://doi.org/10.3892/mmr.2024.13375
- Article Number: 10
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Adak A and Khan MR: An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 76:473–493. 2019. View Article : Google Scholar : PubMed/NCBI | |
Woodruff AW, Salih SY, de Savigny D, Baya EI, Shah AI and Dafalla AA: Toxocariasis in the Sudan. Ann Trop Med Parasitol. 75:559–561. 1981. View Article : Google Scholar : PubMed/NCBI | |
Fan Y and Pedersen O: Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 19:55–71. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wiest R, Albillos A, Trauner M, Bajaj JS and Jalan R: Targeting the gut-liver axis in liver disease. J Hepatol. 67:1084–1103. 2017. View Article : Google Scholar : PubMed/NCBI | |
Milosevic I, Vujovic A, Barac A, Djelic M, Korac M, Radovanovic Spurnic A, Gmizic I, Stevanovic O, Djordjevic V, Lekic N, et al: Gut-Liver axis, gut microbiota, and its modulation in the management of liver diseases: A review of the literature. Int J Mol Sci. 20:3952019. View Article : Google Scholar : PubMed/NCBI | |
Kim ER, Park JS, Kim JH, Oh JY, Oh IJ, Choi DH, Lee YS, Park IS, Kim S, Lee DH, et al: A GLP-1/GLP-2 receptor dual agonist to treat NASH: Targeting the gut-liver axis and microbiome. Hepatology. 75:1523–1538. 2022. View Article : Google Scholar : PubMed/NCBI | |
Song Q, Zhang X, Liu W, Wei H, Liang W, Zhou Y, Ding Y, Ji F, Ho-Kwan Cheung A, Wong N and Yu J: Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J Hepatol. 79:1352–1365. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bertocchi A, Carloni S, Ravenda PS, Bertalot G, Spadoni I, Lo Cascio A, Gandini S, Lizier M, Braga D, Asnicar F, et al: Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell. 39:708–724.e11. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Chen F, Jia L, Long A, Peng Y, Li X, Huang J, Wei X, Fang X, Gao Z, et al: A gut-derived hormone regulates cholesterol metabolism. Cell. 187:1685–700.e18. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kuang J, Wang J, Li Y, Li M, Zhao M, Ge K, Zheng D, Cheung KCP, Liao B, Wang S, et al: Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab. 35:1752–1766.e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sheng Z, Xu J, Li F, Yuan Y, Peng X, Chen S, Zhou R and Huang W: The RING-domain E3 ubiquitin ligase RNF146 promotes cardiac hypertrophy by suppressing the LKB1/AMPK signaling pathway. Exp Cell Res. 410:1129542022. View Article : Google Scholar : PubMed/NCBI | |
Goto J, Otaki Y, Watanabe T, Kobayashi Y, Aono T, Watanabe K, Wanezaki M, Kutsuzawa D, Kato S, Tamura H, et al: HECT (Homologous to the E6-AP Carboxyl Terminus)-Type ubiquitin E3 ligase ITCH attenuates cardiac hypertrophy by suppressing the Wnt/β-catenin signaling pathway. Hypertension. 76:1868–1878. 2020. View Article : Google Scholar : PubMed/NCBI | |
Broquetas T and Carrion JA: Past, present, and future of long-term treatment for hepatitis B virus. World J Gastroenterol. 29:3964–3983. 2023. View Article : Google Scholar : PubMed/NCBI | |
Frenette C, Mendiratta-Lala M, Salgia R, Wong RJ, Sauer BG and Pillai A: ACG clinical guideline: Focal liver lesions. Am J Gastroenterol. 119:1235–1271. 2024. View Article : Google Scholar : PubMed/NCBI | |
European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO) and the European Association for the Study of the Liver (EASL), . EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol. 81:492–542. 2024. View Article : Google Scholar : PubMed/NCBI | |
Forrest EH, Atkinson SR, Richardson P, Masson S, Ryder S, Thursz MR and Allison M: ACG clinical guideline for alcoholic liver disease: The MELD threshold for corticosteroid treatment has yet to be established. Am J Gastroenterol. 114:175–176. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dai JJ, Zhang YF and Zhang ZH: Global trends and hotspots of treatment for nonalcoholic fatty liver disease: A bibliometric and visualization analysis (2010–2023). World J Gastroenterol. 29:5339–5360. 2023. View Article : Google Scholar : PubMed/NCBI | |
Suddle A, Reeves H, Hubner R, Marshall A, Rowe I, Tiniakos D, Hubscher S, Callaway M, Sharma D, See TC, et al: British Society of Gastroenterology guidelines for the management of hepatocellular carcinoma in adults. Gut. 73:1235–1268. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Li B and Li J: DLL4-Notch signalling in acute-on-chronic liver failure: State of the art and perspectives. Life Sci. 317:1214382023. View Article : Google Scholar : PubMed/NCBI | |
Conde de la Rosa L, Garcia-Ruiz C, Vallejo C, Baulies A, Nuñez S, Monte MJ, Marin JJG, Baila-Rueda L, Cenarro A, Civeira F, et al: STARD1 promotes NASH-driven HCC by sustaining the generation of bile acids through the alternative mitochondrial pathway. J Hepatol. 74:1429–1441. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bernsmeier C, Singanayagam A, Patel VC, Wendon J and Antoniades CG: Immunotherapy in the treatment and prevention of infection in acute-on-chronic liver failure. Immunotherapy. 7:641–654. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wulf J, Guckenberger M, Haedinger U, Oppitz U, Mueller G, Baier K and Flentje M: Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol. 45:838–847. 2006. View Article : Google Scholar : PubMed/NCBI | |
Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E and Kamath PS: Global burden of liver disease: 2023 update. J Hepatol. 79:516–537. 2023. View Article : Google Scholar : PubMed/NCBI | |
Taha G, Ezra L and Abu-Freha N: Hepatitis C elimination: Opportunities and challenges in 2023. Viruses. 15:14132023. View Article : Google Scholar : PubMed/NCBI | |
Hsu YC, Huang DQ and Nguyen MH: Global burden of hepatitis B virus: Current status, missed opportunities and a call for action. Nat Rev Gastroenterol Hepatol. 20:524–537. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hernandez-Evole H, Jimenez-Esquivel N, Pose E and Bataller R: Alcohol-associated liver disease: Epidemiology and management. Ann Hepatol. 29:1011622024. View Article : Google Scholar : PubMed/NCBI | |
Julien J, Ayer T, Bethea ED, Tapper EB and Chhatwal J: Projected prevalence and mortality associated with alcohol-related liver disease in the USA, 2019–40: A modelling study. Lancet Public Health. 5:e316–e23. 2020. View Article : Google Scholar : PubMed/NCBI | |
McGlynn KA, Petrick JL and El-Serag HB: Epidemiology of hepatocellular carcinoma. Hepatology. 73 (Suppl 1):S4–S13. 2021. View Article : Google Scholar | |
Collins SL, Stine JG, Bisanz JE, Okafor CD and Patterson AD: Bile acids and the gut microbiota: Metabolic interactions and impacts on disease. Nat Rev Microbiol. 21:236–247. 2023. View Article : Google Scholar : PubMed/NCBI | |
Taranto MP, Perez-Martinez G and Font de Valdez G: Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Res Microbiol. 157:720–725. 2006. View Article : Google Scholar : PubMed/NCBI | |
Han B, Lv X, Liu G, Li S, Fan J, Chen L, Huang Z, Lin G, Xu X, Huang Z, et al: Gut microbiota-related bile acid metabolism-FXR/TGR5 axis impacts the response to anti-α4β7-integrin therapy in humanized mice with colitis. Gut Microbes. 15:22321432023. View Article : Google Scholar : PubMed/NCBI | |
Liu HM, Chang ZY, Yang CW, Chang HH and Lee TY: Farnesoid X receptor agonist GW4064 protects lipopolysaccharide-induced intestinal epithelial barrier function and colorectal tumorigenesis signaling through the αKlotho/βKlotho/FGFs pathways in mice. Int J Mol Sci. 24:169322023. View Article : Google Scholar : PubMed/NCBI | |
Ploton M, Mazuy C, Gheeraert C, Dubois V, Berthier A, Dubois-Chevalier J, Maréchal X, Bantubungi K, Diemer H, Cianférani S, et al: The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis. J Hepatol. 69:1099–1109. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Xiao Y, Zhou K, Yan J, Wang P, Yan W and Cai W: FXR agonist GW4064 improves liver and intestinal pathology and alters bile acid metabolism in rats undergoing small intestinal resection. Am J Physiol Gastrointest Liver Physiol. 317:G108–G115. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Sha Y, Huang X, Yuan W, Wu F, Hong J, Fang S, Huang B, Hu C, Wang B and Zhang X: Roux-en-Y gastric bypass improves metabolic conditions in association with increased serum bile acids level and hepatic Farnesoid X receptor expression in a T2DM rat model. Obes Surg. 29:2912–2922. 2019. View Article : Google Scholar : PubMed/NCBI | |
Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, et al: Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 439:484–489. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zietak M and Kozak LP: Bile acids induce uncoupling protein 1-dependent thermogenesis and stimulate energy expenditure at thermoneutrality in mice. Am J Physiol Endocrinol Metab. 310:E346–E354. 2016. View Article : Google Scholar : PubMed/NCBI | |
Van Treuren W and Dodd D: Microbial contribution to the human metabolome: Implications for health and disease. Annu Rev Pathol. 15:345–369. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cornell RP: Restriction of gut-derived endotoxin impairs DNA synthesis for liver regeneration. Am J Physiol. 249:R563–R569. 1985.PubMed/NCBI | |
Nolan JP: The role of intestinal endotoxin in liver injury: A long and evolving history. Hepatology. 52:1829–1835. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Xi Q, Tan S, Qu Y, Meng Q, Zhang Y, Cheng Y and Wu G: The metabolite butyrate produced by gut microbiota inhibits cachexia-associated skeletal muscle atrophy by regulating intestinal barrier function and macrophage polarization. Int Immunopharmacol. 124:1110012023. View Article : Google Scholar : PubMed/NCBI | |
Tang G, Du Y, Guan H, Jia J, Zhu N, Shi Y, Rong S and Yuan W: Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3K/Akt/mTOR signals. Br J Pharmacol. 179:159–178. 2022. View Article : Google Scholar : PubMed/NCBI | |
Meena AS, Shukla PK, Bell B, Giorgianni F, Caires R, Fernández-Peña C, Beranova S, Aihara E, Montrose MH, Chaib M, et al: TRPV6 channel mediates alcohol-induced gut barrier dysfunction and systemic response. Cell Rep. 39:1109372022. View Article : Google Scholar : PubMed/NCBI | |
Dominguez-Bello MG, Godoy-Vitorino F, Knight R and Blaser MJ: Role of the microbiome in human development. Gut. 68:1108–1114. 2019. View Article : Google Scholar : PubMed/NCBI | |
Han YH, Onufer EJ, Huang LH, Sprung RW, Davidson WS, Czepielewski RS, Wohltmann M, Sorci-Thomas MG, Warner BW and Randolph GJ: Enterically derived high-density lipoprotein restrains liver injury through the portal vein. Science. 373:eabe67292021. View Article : Google Scholar : PubMed/NCBI | |
Gomaa EZ: Human gut microbiota/microbiome in health and diseases: A review. Antonie Van Leeuwenhoek. 113:2019–2040. 2020. View Article : Google Scholar : PubMed/NCBI | |
Robles-Alonso V and Guarner F: Progress in the knowledge of the intestinal human microbiota. Nutr Hosp. 28:553–557. 2013.(In Spanish). PubMed/NCBI | |
Charlet R, Bortolus C, Barbet M, Sendid B and Jawhara S: A decrease in anaerobic bacteria promotes Candida glabrata overgrowth while β-glucan treatment restores the gut microbiota and attenuates colitis. Gut Pathog. 10:502018. View Article : Google Scholar : PubMed/NCBI | |
Charlet R, Pruvost Y, Tumba G, Istel F, Poulain D, Kuchler K, Sendid B and Jawhara S: Remodeling of the Candida glabrata cell wall in the gastrointestinal tract affects the gut microbiota and the immune response. Sci Rep. 8:33162018. View Article : Google Scholar : PubMed/NCBI | |
Bertin Y, Girardeau JP, Chaucheyras-Durand F, Lyan B, Pujos-Guillot E, Harel J and Martin C: Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ Microbiol. 13:365–377. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma HD, Zhao ZB, Ma WT, Liu QZ, Gao CY, Li L, Wang J, Tsuneyama K, Liu B, Zhang W, et al: Gut microbiota translocation promotes autoimmune cholangitis. J Autoimmun. 95:47–57. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shao T, Zhao C, Li F, Gu Z, Liu L, Zhang L, Wang Y, He L, Liu Y, Liu Q, et al: Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J Hepatol. 69:886–895. 2018. View Article : Google Scholar : PubMed/NCBI | |
Giuffre M, Campigotto M, Campisciano G, Comar M and Croce LS: A story of liver and gut microbes: How does the intestinal flora affect liver disease? A review of the literature. Am J Physiol Gastrointest Liver Physiol. 318:G889–G906. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bellot P, Frances R and Such J: Pathological bacterial translocation in cirrhosis: Pathophysiology, diagnosis and clinical implications. Liver Int. 33:31–39. 2013. View Article : Google Scholar : PubMed/NCBI | |
Giorgio V, Miele L, Principessa L, Ferretti F, Villa MP, Negro V, Grieco A, Alisi A and Nobili V: Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity. Dig Liver Dis. 46:556–560. 2014. View Article : Google Scholar : PubMed/NCBI | |
Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Mascianà R, Forgione A, Gabrieli ML, Perotti G, et al: Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 49:1877–1887. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rao R: Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology. 50:638–644. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sewell GW and Kaser A: Interleukin-23 in the pathogenesis of inflammatory bowel disease and implications for therapeutic intervention. J Crohns Colitis. 16 (Suppl 2):ii3–ii19. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, Cohen D, Liguori G, Bourrier A, Nion-Larmurier I, et al: Fungal microbiota dysbiosis in IBD. Gut. 66:1039–1048. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ng SC, Benjamin JL, McCarthy NE, Hedin CR, Koutsoumpas A, Plamondon S, Price CL, Hart AL, Kamm MA, Forbes A, et al: Relationship between human intestinal dendritic cells, gut microbiota, and disease activity in Crohn's disease. Inflamm Bowel Dis. 17:2027–2037. 2011. View Article : Google Scholar : PubMed/NCBI | |
Coccia M, Harrison OJ, Schiering C, Asquith MJ, Becher B, Powrie F and Maloy KJ: IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med. 209:1595–1609. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ma TY, Boivin MA, Ye D, Pedram A and Said HM: Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: Role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol. 288:G422–G430. 2005. View Article : Google Scholar : PubMed/NCBI | |
He WQ, Wang J, Sheng JY, Zha JM, Graham WV and Turner JR: Contributions of myosin light chain kinase to regulation of epithelial paracellular permeability and mucosal homeostasis. Int J Mol Sci. 21:9932020. View Article : Google Scholar : PubMed/NCBI | |
Chotikatum S, Naim HY and El-Najjar N: Inflammation induced ER stress affects absorptive intestinal epithelial cells function and integrity. Int Immunopharmacol. 55:336–344. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kinoshita N, Hiroi T, Ohta N, Fukuyama S, Park EJ and Kiyono H: Autocrine IL-15 mediates intestinal epithelial cell death via the activation of neighboring intraepithelial NK cells. J Immunol. 169:6187–6192. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rohr M, Narasimhulu CA, Keewan E, Hamid S and Parthasarathy S: The dietary peroxidized lipid, 13-HPODE, promotes intestinal inflammation by mediating granzyme B secretion from natural killer cells. Food Funct. 11:9526–9534. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yasuda K, Nakanishi K and Tsutsui H: Interleukin-18 in health and disease. Int J Mol Sci. 19:6492019. View Article : Google Scholar | |
Woznicki JA, Saini N, Flood P, Rajaram S, Lee CM, Stamou P, Skowyra A, Bustamante-Garrido M, Regazzoni K, Crawford N, et al: TNF-α synergises with IFN-γ to induce caspase-8-JAK1/2-STAT1-dependent death of intestinal epithelial cells. Cell Death Dis. 12:8642021. View Article : Google Scholar : PubMed/NCBI | |
Chang JT: Pathophysiology of inflammatory bowel diseases. N Engl J Med. 383:2652–2664. 2020. View Article : Google Scholar : PubMed/NCBI | |
Romagnani S: Lymphokine production by human T cells in disease states. Annu Rev Immunol. 12:227–257. 1994. View Article : Google Scholar : PubMed/NCBI | |
Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R, et al: IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 15:985–995. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Li B, Yang X, Liu T, Shi T, Deng B, Zhang Y, Jia L, Jiang Z and He R: Non-hematopoietic STAT6 induces epithelial tight junction dysfunction and promotes intestinal inflammation and tumorigenesis. Mucosal Immunol. 12:1304–1315. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ceponis PJ, Botelho F, Richards CD and McKay DM: Interleukins 4 and 13 increase intestinal epithelial permeability by a phosphatidylinositol 3-kinase pathway. Lack of evidence for STAT 6 involvement. J Biol Chem. 275:29132–29137. 2000. View Article : Google Scholar : PubMed/NCBI | |
He L, Liu T, Shi Y, Tian F, Hu H, Deb DK, Bissonnette M and Li YC: Gut epithelial Vitamin D receptor regulates Microbiota-dependent mucosal inflammation by suppressing intestinal epithelial cell apoptosis. Endocrinology. 159:967–979. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Kwon JE and Cho ML: Immunological pathogenesis of inflammatory bowel disease. Intest Res. 16:26–42. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ni J, You Y, Feng G, Zhang S, Bao W, Hou H, Li H, Liu L, Zheng M, et al: SNX10-mediated LPS sensing causes intestinal barrier dysfunction via a caspase-5-dependent signaling cascade. EMBO J. 40:e1080802021. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Rempel JD, Yang J and Minuk GY: The effects of Pathogen-associated molecular patterns on peripheral blood monocytes in patients with Non-alcoholic fatty liver disease. J Clin Exp Hepatol. 12:808–817. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nakamoto N and Kanai T: Role of toll-like receptors in immune activation and tolerance in the liver. Front Immunol. 5:2212014. View Article : Google Scholar : PubMed/NCBI | |
Szabo G, Dolganiuc A and Mandrekar P: Pattern recognition receptors: A contemporary view on liver diseases. Hepatology. 44:287–298. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kesar V and Odin JA: Toll-like receptors and liver disease. Liver Int. 34:184–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hardin PE: From biological clock to biological rhythms. Genome Biol. 1:REVIEWS10232000. View Article : Google Scholar : PubMed/NCBI | |
Jouffe C, Weger BD, Martin E, Atger F, Weger M, Gobet C, Ramnath D, Charpagne A, Morin-Rivron D, Powell EE, et al: Disruption of the circadian clock component BMAL1 elicits an endocrine adaption impacting on insulin sensitivity and liver disease. Proc Natl Acad Sci USA. 119:e22000831192022. View Article : Google Scholar : PubMed/NCBI | |
Kinouchi K and Sassone-Corsi P: Metabolic rivalry: Circadian homeostasis and tumorigenesis. Nat Rev Cancer. 20:645–661. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nassan M and Videnovic A: Circadian rhythms in neurodegenerative disorders. Nat Rev Neurol. 18:7–24. 2022. View Article : Google Scholar : PubMed/NCBI | |
Song S, Tien CL, Cui H, Basil P, Zhu N, Gong Y, Li W, Li H, Fan Q, Min Choi J, et al: Myocardial Rev-erb-mediated diurnal metabolic rhythm and obesity paradox. Circulation. 145:448–464. 2022. View Article : Google Scholar : PubMed/NCBI | |
Choi H, Rao MC and Chang EB: Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism. Nat Rev Gastroenterol Hepatol. 18:679–689. 2021. View Article : Google Scholar : PubMed/NCBI | |
Heddes M, Altaha B, Niu Y, Reitmeier S, Kleigrewe K, Haller D and Kiessling S: The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis. Nat Commun. 13:60682022. View Article : Google Scholar : PubMed/NCBI | |
Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, et al: Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 159:514–529. 2014. View Article : Google Scholar : PubMed/NCBI | |
Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF and Gordon JI: The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 101:15718–15723. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rabot S, Membrez M, Bruneau A, Gerard P, Harach T, Moser M, Raymond F, Mansourian R and Chou CJ: Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 24:4948–4959. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Coker OO, Chu ES, Fu K, Lau HCH, Wang YX, Chan AWH, Wei H, Yang X, Sung JJY and Yu J: Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut. 70:761–774. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Kong Q, Li X, Zhao J, Zhang H, Chen W and Wang G: A High-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference. Nutrients. 12:31972020. View Article : Google Scholar : PubMed/NCBI | |
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER and Gordon JI: An Obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 444:1027–1031. 2006. View Article : Google Scholar : PubMed/NCBI | |
Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E and Berry D: Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol. 19:95–105. 2017. View Article : Google Scholar : PubMed/NCBI | |
Palmnas-Bedard MSA, Costabile G, Vetrani C, Aberg S, Hjalmarsson Y, Dicksved J, Riccardi G and Landberg R: The human gut microbiota and glucose metabolism: A scoping review of key bacteria and the potential role of SCFAs. Am J Clin Nutr. 116:862–874. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dunn R, Wetten A, McPherson S and Donnelly MC: Viral hepatitis in 2021: The challenges remaining and how we should tackle them. World J Gastroenterol. 28:76–95. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao X and Guo S: Methods for visualizing intracellular organelles. J Vis Exp. Mar 3–2023.doi: 10.3791/64966. | |
Zhao W, Ma L, Cai C and Gong X: Caffeine Inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-induced THP-1 macrophages. Int J Biol Sci. 15:1571–1581. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chou HH, Chien WH, Wu LL, Cheng CH, Chung CH, Horng JH, Ni YH, Tseng HT, Wu D, Lu X, et al: Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci USA. 112:2175–2180. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chauhan A, Kumar R, Sharma S, Mahanta M, Vayuuru SK, Nayak B and Kumar S: Shalimar: Fecal microbiota transplantation in Hepatitis B e antigen-positive chronic Hepatitis B patients: A pilot study. Dig Dis Sci. 66:873–880. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Ren Z, Gao X, Hu X, Zhou Y, Jiang J, Lu H, Yin S, Ji J, Zhou L and Zheng S: Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Med. 12:1022020. View Article : Google Scholar : PubMed/NCBI | |
Preveden T, Scarpellini E, Milic N, Luzza F and Abenavoli L: Gut microbiota changes and chronic hepatitis C virus infection. Expert Rev Gastroenterol Hepatol. 11:813–819. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Wu SD, Chen Y, Li XY, Zhu Q, Nakayama K, Zhang WQ, Weng CZ, Zhang J, Wang HK, et al: Alterations in gut microbiome and metabolomics in chronic hepatitis B infection-associated liver disease and their impact on peripheral immune response. Gut Microbes. 15:21550182023. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Yan X, Zou D, Yang Z, Wang X, Liu W, Wang S, Li X, Han J, Huang L and Yuan J: Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach. BMC Gastroenterol. 13:1752013. View Article : Google Scholar : PubMed/NCBI | |
Bajaj JS, Liu EJ, Kheradman R, Fagan A, Heuman DM, White M, Gavis EA, Hylemon P, Sikaroodi M and Gillevet PM: Fungal dysbiosis in cirrhosis. Gut. 67:1146–1154. 2018. View Article : Google Scholar : PubMed/NCBI | |
Aly AM, Adel A, El-Gendy AO, Essam TM and Aziz RK: Gut microbiome alterations in patients with stage 4 hepatitis C. Gut Pathog. 8:422016. View Article : Google Scholar : PubMed/NCBI | |
Luther J, Khan S, Gala MK, Kedrin D, Sridharan G, Goodman RP, Garber JJ, Masia R, Diagacomo E, Adams D, et al: Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation. Proc Natl Acad Sci USA. 117:11667–11673. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jophlin LL, Singal AK, Bataller R, Wong RJ, Sauer BG, Terrault NA and Shah VH: ACG clinical guideline: Alcohol-associated liver disease. Am J Gastroenterol. 119:30–54. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang DQ, Mathurin P, Cortez-Pinto H and Loomba R: Global epidemiology of alcohol-associated cirrhosis and HCC: Trends, projections and risk factors. Nat Rev Gastroenterol Hepatol. 20:37–49. 2023. View Article : Google Scholar : PubMed/NCBI | |
Singal AK, Bataller R, Ahn J, Kamath PS and Shah VH: ACG clinical guideline: Alcoholic liver disease. Am J Gastroenterol. 113:175–194. 2018. View Article : Google Scholar : PubMed/NCBI | |
Acharya C and Bajaj JS: Gut Microbiota and complications of liver disease. Gastroenterol Clin North Am. 46:155–169. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dubinkina VB, Tyakht AV, Odintsova VY, Yarygin KS, Kovarsky BA, Pavlenko AV, Ischenko DS, Popenko AS, Alexeev DG, Taraskina AY, et al: Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. Microbiome. 5:1412017. View Article : Google Scholar : PubMed/NCBI | |
Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, Nauta A, Scott K, Stahl B, van Harsselaar J, et al: Short chain fatty acids in human gut and metabolic health. Benef Microbes. 11:411–455. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhang X, Zhu L, Yang X, He F, Wang T, Bao T, Lu H, Wang H and Yang S: Inulin alleviates inflammation of alcoholic liver disease via SCFAs-inducing suppression of M1 and facilitation of M2 macrophages in mice. Int Immunopharmacol. 78:1060622020. View Article : Google Scholar : PubMed/NCBI | |
Yang X, He F, Zhang Y, Xue J, Li K, Zhang X, Zhu L, Wang Z, Wang H and Yang S: Inulin ameliorates alcoholic liver disease via suppressing LPS-TLR4-mpsi axis and modulating gut microbiota in mice. Alcohol Clin Exp Res. 43:411–424. 2019. View Article : Google Scholar : PubMed/NCBI | |
Deng M, Qu F, Chen L, Liu C, Zhang M, Ren F, Guo H, Zhang H, Ge S, Wu C and Zhao L: SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD. J Endocrinol. 245:425–437. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mundi MS, Velapati S, Patel J, Kellogg TA, Abu Dayyeh BK and Hurt RT: Evolution of NAFLD and its management. Nutr Clin Pract. 35:72–84. 2020. View Article : Google Scholar : PubMed/NCBI | |
Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M and Clement K: Metabolism and metabolic disorders and the microbiome: The intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Gastroenterology. 160:573–599. 2021. View Article : Google Scholar : PubMed/NCBI | |
Canfora EE, Meex RCR, Venema K and Blaak EE: Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 15:261–273. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kolodziejczyk AA, Zheng D, Shibolet O and Elinav E: The role of the microbiome in NAFLD and NASH. EMBO Mol Med. 11:e93022019. View Article : Google Scholar : PubMed/NCBI | |
Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, et al: Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 482:179–185. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhong S, Li L, Liang N, Zhang L, Xu X, Chen S and Yin H: Acetaldehyde dehydrogenase 2 regulates HMG-CoA reductase stability and cholesterol synthesis in the liver. Redox Biol. 41:1019192021. View Article : Google Scholar : PubMed/NCBI | |
Inokuchi S, Tsukamoto H, Park E, Liu ZX, Brenner DA and Seki E: Toll-like receptor 4 mediates alcohol-induced steatohepatitis through bone marrow-derived and endogenous liver cells in mice. Alcohol Clin Exp Res. 35:1509–1518. 2011.PubMed/NCBI | |
Bogatyrev SR, Rolando JC and Ismagilov RF: Self-reinoculation with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine. Microbiome. 8:192020. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V, et al: Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 360:eaan59312018. View Article : Google Scholar : PubMed/NCBI | |
Endo H, Niioka M, Kobayashi N, Tanaka M and Watanabe T: Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: New insight into the probiotics for the gut-liver axis. PLoS One. 8:e633882013. View Article : Google Scholar : PubMed/NCBI | |
Ma YY, Li L, Yu CH, Shen Z, Chen LH and Li YM: Effects of probiotics on nonalcoholic fatty liver disease: A meta-analysis. World J Gastroenterol. 19:6911–6918. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kirpich IA, Solovieva NV, Leikhter SN, Shidakova NA, Lebedeva OV, Sidorov PI, Bazhukova TA, Soloviev AG, Barve SS, McClain CJ and Cave M: Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: A pilot study. Alcohol. 42:675–682. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schuppan D and Afdhal NH: Liver cirrhosis. Lancet. 371:838–851. 2008. View Article : Google Scholar : PubMed/NCBI | |
Quiroz-Aldave JE, Gamarra-Osorio ER, Durand-Vasquez MDC, Rafael-Robles LDP, Gonzales-Yovera JG, Quispe-Flores MA, Concepción-Urteaga LA, Román-González A, Paz-Ibarra J and Concepción-Zavaleta MJ: From liver to hormones: The endocrine consequences of cirrhosis. World J Gastroenterol. 30:1073–1095. 2024. View Article : Google Scholar : PubMed/NCBI | |
Horn P and Tacke F: Metabolic reprogramming in liver fibrosis. Cell Metab. 36:1439–1455. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Li Q, Liu W, Zong C, Wei L, Shi Y and Han Z: Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: From pathogenesis to treatment. Cell Mol Immunol. 20:583–599. 2023. View Article : Google Scholar : PubMed/NCBI | |
Iredale JP, Thompson A and Henderson NC: Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation. Biochim Biophys Acta. 1832:876–883. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bataller R and Brenner DA: Liver fibrosis. J Clin Invest. 115:209–218. 2005. View Article : Google Scholar : PubMed/NCBI | |
Smith A, Baumgartner K and Bositis C: Cirrhosis: Diagnosis and management. Am Fam Physician. 100:759–770. 2019.PubMed/NCBI | |
Tapper EB and Parikh ND: Diagnosis and management of cirrhosis and its complications: A review. JAMA. 329:1589–1602. 2023. View Article : Google Scholar : PubMed/NCBI | |
GBD 2019 Diseases and Injuries Collaborators: Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 396:1204–1222. 2020. View Article : Google Scholar | |
Asrani SK, Devarbhavi H, Eaton J and Kamath PS: Burden of liver diseases in the world. J Hepatol. 70:151–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
European Association for the Study of the Liver. Electronic address, . simpleeasloffice@easloffice.eu and European Association for the Study of the Liver: EASL clinical practice guidelines on Acute-on-chronic liver failure. J Hepatol. 79:461–491. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gines P, Krag A, Abraldes JG, Sola E, Fabrellas N and Kamath PS: Liver cirrhosis. Lancet. 398:1359–1376. 2021. View Article : Google Scholar : PubMed/NCBI | |
Groschwitz KR and Hogan SP: Intestinal barrier function: Molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 124:3–22. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nishimura N, Kaji K, Kitagawa K, Sawada Y, Furukawa M, Ozutsumi T, Fujinaga Y, Tsuji Y, Takaya H, Kawaratani H, et al: Intestinal permeability is a mechanical rheostat in the pathogenesis of liver cirrhosis. Int J Mol Sci. 22:69212021. View Article : Google Scholar : PubMed/NCBI | |
Trebicka J, Macnaughtan J, Schnabl B, Shawcross DL and Bajaj JS: The microbiota in cirrhosis and its role in hepatic decompensation. J Hepatol. 75 (Suppl 1):S67–S81. 2021. View Article : Google Scholar : PubMed/NCBI | |
Benjamin J, Singla V, Arora I, Sood S and Joshi YK: Intestinal permeability and complications in liver cirrhosis: A prospective cohort study. Hepatol Res. 43:200–207. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shibamoto A, Kaji K, Nishimura N, Kubo T, Iwai S, Tomooka F, Suzuki J, Tsuji Y, Fujinaga Y, Kawaratani H, et al: Vitamin D deficiency exacerbates alcohol-related liver injury via gut barrier disruption and hepatic overload of endotoxin. J Nutr Biochem. 122:1094502023. View Article : Google Scholar : PubMed/NCBI | |
Suk KT and Kim DJ: Gut microbiota: Novel therapeutic target for nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 13:193–204. 2019. View Article : Google Scholar : PubMed/NCBI | |
Albillos A, Lario M and Alvarez-Mon M: Cirrhosis-associated immune dysfunction: Distinctive features and clinical relevance. J Hepatol. 61:1385–1396. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fukui H: Role of gut dysbiosis in liver diseases: What have we learned so far? Diseases. 7:582019. View Article : Google Scholar : PubMed/NCBI | |
Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B and Verne GN: Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 24:503–512. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ghosh S, Whitley CS, Haribabu B and Jala VR: Regulation of intestinal barrier function by microbial metabolites. Cell Mol Gastroenterol Hepatol. 11:1463–1482. 2021. View Article : Google Scholar : PubMed/NCBI | |
Oh TG, Kim SM, Caussy C, Fu T, Guo J, Bassirian S, Singh S, Madamba EV, Bettencourt R, Richards L, et al: A universal Gut-microbiome-derived signature predicts cirrhosis. Cell Metab. 32:878–888.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chang CS, Chen GH, Lien HC and Yeh HZ: Small intestine dysmotility and bacterial overgrowth in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology. 28:1187–1190. 1998. View Article : Google Scholar : PubMed/NCBI | |
Corradi F, Brusasco C, Fernandez J, Vila J, Ramirez MJ, Seva-Pereira T, Fernández-Varo G, Mosbah IB, Acevedo J, Silva A, et al: Effects of pentoxifylline on intestinal bacterial overgrowth, bacterial translocation and spontaneous bacterial peritonitis in cirrhotic rats with ascites. Dig Liver Dis. 44:239–244. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, Puri P, Sterling RK, Luketic V, Stravitz RT, Siddiqui MS, Fuchs M, et al: Randomised clinical trial: Lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis. Aliment Pharmacol Ther. 39:1113–1125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bajaj JS, Kassam Z, Fagan A, Gavis EA, Liu E, Cox IJ, Kheradman R, Heuman D, Wang J, Gurry T, et al: Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: A randomized clinical trial. Hepatology. 66:1727–1738. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bajaj JS, Hylemon PB, Ridlon JM, Heuman DM, Daita K, White MB, Monteith P, Noble NA, Sikaroodi M and Gillevet PM: Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol. 303:G675–G685. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, Wang Y, Zhu B and Li L: Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 54:562–572. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shen TD, Daniel SG, Patel S, Kaplan E, Phung L, Lemelle-Thomas K, Chau L, Herman L, Trisolini C, Stonelake A, et al: The Mucosally-adherent rectal microbiota contains features unique to alcohol-related cirrhosis. Gut Microbes. 13:19877812021. View Article : Google Scholar : PubMed/NCBI | |
Egger M, Horvath A, Pruller F, Fickert P, Finkelman M, Kriegl L, Grønbaek H, Møller HJ, Prattes J, Krause R, et al: Fungal translocation measured by serum 1,3-β-D-glucan correlates with severity and outcome of liver cirrhosis-A pilot study. Liver Int. 43:1975–1983. 2023. View Article : Google Scholar : PubMed/NCBI | |
Saaoud F, Liu L, Xu K, Cueto R, Shao Y, Lu Y, Sun Y, Snyder NW, Wu S, Yang L, et al: Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways. JCI Insight. 8:e1581832023. View Article : Google Scholar : PubMed/NCBI | |
Pleguezuelo M, Benitez JM, Jurado J, Montero JL and De la Mata M: Diagnosis and management of bacterial infections in decompensated cirrhosis. World J Hepatol. 5:16–25. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Ahn SW, Kim JY, Whon TW, Lim SK, Ryu BH, Han NS, Choi HJ, Roh SW and Lee SH: Probiotic Lactobacilli ameliorate alcohol-induced hepatic damage via gut microbial alteration. Front Microbiol. 13:8692502022. View Article : Google Scholar : PubMed/NCBI | |
Llovet JM, Pinyol R, Yarchoan M, Singal AG, Marron TU, Schwartz M, Pikarsky E, Kudo M and Finn RS: Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat Rev Clin Oncol. 21:294–311. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ding JH, Jin Z, Yang XX, Lou J, Shan WX, Hu YX, Du Q, Liao QS, Xie R and Xu JY: Role of gut microbiota via the gut-liver-brain axis in digestive diseases. World J Gastroenterol. 26:6141–6162. 2020. View Article : Google Scholar : PubMed/NCBI | |
Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M, Estruch R, Cardona Diaz F, Andrés-Lacueva C and Tinahones FJ: Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr. 95:1323–1334. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mutlu E, Keshavarzian A, Engen P, Forsyth CB, Sikaroodi M and Gillevet P: Intestinal dysbiosis: A possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res. 33:1836–1846. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yan AW, Fouts DE, Brandl J, Starkel P, Torralba M, Schott E, Tsukamoto H, Nelson KE, Brenner DA and Schnabl B: Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 53:96–105. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mutlu EA, Gillevet PM, Rangwala H, Sikaroodi M, Naqvi A, Engen PA, Kwasny M, Lau CK and Keshavarzian A: Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol. 302:G966–G978. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA, et al: The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 63:764–775. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, Chen Y and Li L: Altered fecal microbiota correlates with liver biochemistry in nonobese patients with Non-alcoholic fatty liver disease. Sci Rep. 6:320022016. View Article : Google Scholar : PubMed/NCBI | |
Singh DP, Khare P, Bijalwan V, Baboota RK, Singh J, Kondepudi KK, Chopra K and Bishnoi M: Coadministration of isomalto-oligosaccharides augments metabolic health benefits of cinnamaldehyde in high fat diet fed mice. Biofactors. 43:821–835. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ponziani FR, Bhoori S, Castelli C, Putignani L, Rivoltini L, Del Chierico F, Sanguinetti M, Morelli D, Paroni Sterbini F, Petito V, et al: Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology. 69:107–120. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sarangi AN, Goel A, Singh A, Sasi A and Aggarwal R: Faecal bacterial microbiota in patients with cirrhosis and the effect of lactulose administration. BMC Gastroenterol. 17:1252017. View Article : Google Scholar : PubMed/NCBI | |
Ren Z, Li A, Jiang J, Zhou L, Yu Z, Lu H, Xie H, Chen X, Shao L, Zhang R, et al: Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut. 68:1014–1023. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schneider KM, Mohs A, Gui W, Galvez EJC, Candels LS, Hoenicke L, Muthukumarasamy U, Holland CH, Elfers C, Kilic K, et al: Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment. Nat Commun. 13:39642022. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhang Y, Hong W, Wang B, Chen Y, Yang P, Zhou J, Fan J, Zeng Z and Du S: Gut microbiota modulate radiotherapy-associated antitumor immune responses against hepatocellular carcinoma Via STING signaling. Gut Microbes. 14:21190552022. View Article : Google Scholar : PubMed/NCBI | |
Thoen RU, Longo L, Leonhardt LC, Pereira MHM, Rampelotto PH, Cerski CTS and Álvares-da-Silva MR: Alcoholic liver disease and intestinal microbiota in an experimental model: Biochemical, inflammatory, and histologic parameters. Nutrition. 106:1118882023. View Article : Google Scholar : PubMed/NCBI | |
McMahan RH, Hulsebus HJ, Najarro KM, Giesy LE, Frank DN and Kovacs EJ: Changes in gut microbiome correlate with intestinal barrier dysfunction and inflammation following a 3-day ethanol exposure in aged mice. Alcohol. 107:136–143. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sangineto M, Grander C, Grabherr F, Mayr L, Enrich B, Schwärzler J, Dallio M, Bukke VN, Moola A, Moschetta A, et al: Recovery of Bacteroides thetaiotaomicron ameliorates hepatic steatosis in experimental alcohol-related liver disease. Gut Microbes. 14:20890062022. View Article : Google Scholar : PubMed/NCBI | |
Day AW and Kumamoto CA: Gut microbiome dysbiosis in alcoholism: Consequences for health and recovery. Front Cell Infect Microbiol. 12:8401642022. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Li Q, Chai W, Sun C, Zhang T, Zhao C, Yuan Y, Wang X, Liu H and Ye H: Lactobacillus paracasei Jlus66 extenuate oxidative stress and inflammation via regulation of intestinal flora in rats with non alcoholic fatty liver disease. Food Sci Nutr. 7:2636–2646. 2019. View Article : Google Scholar : PubMed/NCBI | |
Safari Z and Gerard P: The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol Life Sci. 76:1541–1558. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ji Y, Yin Y, Li Z and Zhang W: Gut Microbiota-derived components and metabolites in the progression of non-alcoholic fatty liver disease (NAFLD). Nutrients. 11:17122019. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Yu CH, Li XJ, Yao JM, Fang ZY, Yoon SH and Yu WY: Gut dysbiosis in nonalcoholic fatty liver disease: Pathogenesis, diagnosis, and therapeutic implications. Front Cell Infect Microbiol. 12:9970182022. View Article : Google Scholar : PubMed/NCBI | |
Liu S and Yang X: Intestinal flora plays a role in the progression of hepatitis-cirrhosis-liver cancer. Front Cell Infect Microbiol. 13:11401262023. View Article : Google Scholar : PubMed/NCBI | |
Lee NY and Suk KT: The role of the gut microbiome in liver cirrhosis treatment. Int J Mol Sci. 22:1992020. View Article : Google Scholar : PubMed/NCBI | |
Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, et al: Alterations of the human gut microbiome in liver cirrhosis. Nature. 513:59–64. 2014. View Article : Google Scholar : PubMed/NCBI | |
Akkiz H: The gut microbiome and hepatocellular carcinoma. J Gastrointest Cancer. 52:1314–1319. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schwabe RF and Greten TF: Gut microbiome in HCC-mechanisms, diagnosis and therapy. J Hepatol. 72:230–238. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Hou L and Sun Q: Correlation analysis of intestinal flora and immune function in patients with primary hepatocellular carcinoma. J Gastrointest Oncol. 13:1308–1316. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang HL, Yu LX, Yang W, Tang L, Lin Y, Wu H, Zhai B, Tan YX, Shan L, Liu Q, et al: Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J Hepatol. 57:803–812. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, Caviglia JM, Khiabanian H, Adeyemi A, Bataller R, et al: Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 21:504–516. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mou WL, Chen SR, Wu ZT, Hu LH, Zhang JY, Chang HJ, Zhou H and Liu Y: LPS-TLR4/MD-2-TNF-α signaling mediates alcohol-induced liver fibrosis in rats. J Toxicol Pathol. 35:193–203. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu LX, Yan HX, Liu Q, Yang W, Wu HP, Dong W, Tang L, Lin Y, He YQ, Zou SS, et al: Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology. 52:1322–1333. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, et al: Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 499:97–101. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nguyen PT, Kanno K, Pham QT, Kikuchi Y, Kakimoto M, Kobayashi T, Otani Y, Kishikawa N, Miyauchi M, Arihiro K, et al: Senescent hepatic stellate cells caused by deoxycholic acid modulates malignant behavior of hepatocellular carcinoma. J Cancer Res Clin Oncol. 146:3255–3268. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vaughn BP, Rank KM and Khoruts A: Fecal microbiota transplantation: Current status in treatment of gi and liver disease. Clin Gastroenterol Hepatol. 17:353–361. 2019. View Article : Google Scholar : PubMed/NCBI | |
Routy B, Lenehan JG, Miller WH Jr, Jamal R, Messaoudene M, Daisley BA, Hes C, Al KF, Martinez-Gili L, Punčochář M, et al: Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: A phase I trial. Nat Med. 29:2121–2132. 2023. View Article : Google Scholar : PubMed/NCBI | |
Belvoncikova P, Maronek M and Gardlik R: Gut dysbiosis and fecal microbiota transplantation in autoimmune diseases. Int J Mol Sci. 23:107292022. View Article : Google Scholar : PubMed/NCBI | |
Borody TJ, Eslick GD and Clancy RL: Fecal microbiota transplantation as a new therapy: From Clostridioides difficile infection to inflammatory bowel disease, irritable bowel syndrome, and colon cancer. Curr Opin Pharmacol. 49:43–51. 2019. View Article : Google Scholar : PubMed/NCBI | |
Burz SD, Monnoye M, Philippe C, Farin W, Ratziu V, Strozzi F, Paillarse JM, Chêne L, Blottière HM and Gérard P: Fecal microbiota transplant from human to mice gives insights into the role of the gut microbiota in non-alcoholic fatty liver disease (NAFLD). Microorganisms. 9:1992021. View Article : Google Scholar : PubMed/NCBI | |
Purohit A, Alam MJ, Kandiyal B, Shalimar Das B and Banerjee SK: Gut microbiome and non-alcoholic fatty liver disease. Prog Mol Biol Transl Sci. 191:187–206. 2022. View Article : Google Scholar : PubMed/NCBI | |
Brandt LJ and Aroniadis OC: An overview of fecal microbiota transplantation: Techniques, indications, and outcomes. Gastrointest Endosc. 78:240–249. 2013. View Article : Google Scholar : PubMed/NCBI | |
Persky SE and Brandt LJ: Treatment of recurrent Clostridium difficile-associated diarrhea by administration of donated stool directly through a colonoscope. Am J Gastroenterol. 95:3283–3285. 2000. View Article : Google Scholar : PubMed/NCBI | |
Michailidis L, Currier AC, Le M and Flomenhoft DR: Adverse events of fecal microbiota transplantation: A meta-analysis of high-quality studies. Ann Gastroenterol. 34:802–814. 2021.PubMed/NCBI | |
Allegretti JR, Kassam Z, Mullish BH, Chiang A, Carrellas M, Hurtado J, Marchesi JR, McDonald JAK, Pechlivanis A, Barker GF, et al: Effects of fecal microbiota transplantation with oral capsules in obese patients. Clin Gastroenterol Hepatol. 18:855–863.e2. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Tang X, Liang Z, Chen M and Sun L: Taurocholic acid promotes hepatic stellate cell activation via S1PR2/p38 MAPK/YAP signaling under cholestatic conditions. Clin Mol Hepatol. 29:465–481. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mancinelli R, Ceci L, Kennedy L, Francis H, Meadows V, Chen L, Carpino G, Kyritsi K, Wu N, Zhou T, et al: The effects of Taurocholic acid on biliary damage and liver fibrosis are mediated by calcitonin-gene-related peptide signaling. Cells. 11:15912022. View Article : Google Scholar : PubMed/NCBI | |
Uyttebroek S, Chen B, Onsea J, Ruythooren F, Debaveye Y, Devolder D, Spriet I, Depypere M, Wagemans J, Lavigne R, et al: Safety and efficacy of phage therapy in difficult-to-treat infections: A systematic review. Lancet Infect Dis. 22:e208–e220. 2022. View Article : Google Scholar : PubMed/NCBI | |
Federici S, Kredo-Russo S, Valdes-Mas R, Kviatcovsky D, Weinstock E, Matiuhin Y, Silberberg Y, Atarashi K, Furuichi M, Oka A, et al: Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell. 185:2879–2898.e24. 2022. View Article : Google Scholar : PubMed/NCBI | |
Duan Y, Young R and Schnabl B: Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 19:135–144. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shuwen H and Kefeng D: Intestinal phages interact with bacteria and are involved in human diseases. Gut Microbes. 14:21137172022. View Article : Google Scholar : PubMed/NCBI | |
Duan Y, Llorente C, Lang S, Brandl K, Chu H, Jiang L, White RC, Clarke TH, Nguyen K, Torralba M, et al: Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature. 575:505–511. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fujiki J and Schnabl B: Phage therapy: Targeting intestinal bacterial microbiota for the treatment of liver diseases. JHEP Rep. 5:1009092023. View Article : Google Scholar : PubMed/NCBI | |
Gong X, Geng H, Yang Y, Zhang S, He Z, Fan Y, Yin F, Zhang Z and Chen GQ: Metabolic engineering of commensal bacteria for gut butyrate delivery and dissection of host-microbe interaction. Metab Eng. 80:94–106. 2023. View Article : Google Scholar : PubMed/NCBI | |
Anand AC and Acharya SK: The story of ammonia in liver disease: An unraveling continuum. J Clin Exp Hepatol. 14:1013612024. View Article : Google Scholar : PubMed/NCBI | |
Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, Kotula JW, Antipov E, Dagon Y, Denney WS, et al: An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med. 11:eaau79752019. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Hu S, Tang B, Yang H and Sun D: Engineering Escherichia coli Nissle 1917 as a microbial chassis for therapeutic and industrial applications. Biotechnol Adv. 67:1082022023. View Article : Google Scholar : PubMed/NCBI | |
Lynch JP, Goers L and Lesser CF: Emerging strategies for engineering Escherichia coli Nissle 1917-based therapeutics. Trends Pharmacol Sci. 43:772–786. 2022. View Article : Google Scholar : PubMed/NCBI | |
Husted AS, Trauelsen M, Rudenko O, Hjorth SA and Schwartz TW: GPCR-mediated signaling of metabolites. Cell Metab. 25:777–796. 2017. View Article : Google Scholar : PubMed/NCBI | |
Akiba Y and Kaunitz JD: Duodenal luminal chemosensing; acid, ATP, and nutrients. Curr Pharm Des. 20:2760–2765. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kokorovic A, Cheung GW, Breen DM, Chari M, Lam CK and Lam TK: Duodenal mucosal protein kinase C-δ regulates glucose production in rats. Gastroenterology. 141:1720–1727. 2011. View Article : Google Scholar : PubMed/NCBI | |
van Baar ACG, Beuers U, Wong K, Haidry R, Costamagna G, Hafedi A, Deviere J, Ghosh SS, Lopez-Talavera JC, Rodriguez L, et al: Endoscopic duodenal mucosal resurfacing improves glycaemic and hepatic indices in type 2 diabetes: 6-month multicentre results. JHEP Rep. 1:429–437. 2019. View Article : Google Scholar : PubMed/NCBI | |
de Oliveira GHP, de Moura DTH, Funari MP, McCarty TR, Ribeiro IB, Bernardo WM, Sagae VMT, Freitas JR Jr, Souza GMV and de Moura EGH: Metabolic effects of endoscopic duodenal mucosal resurfacing: A systematic review and Meta-analysis. Obes Surg. 31:1304–1312. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shamseddeen H, Vuppalanchi R and Gromski MA: Duodenal mucosal resurfacing for nonalcoholic fatty liver disease. Clin Liver Dis (Hoboken). 20:166–169. 2022. View Article : Google Scholar : PubMed/NCBI | |
Condello G and Chen CY: Minireview: Current status of endoscopic duodenal mucosal resurfacing. Obes Res Clin Pract. 14:504–507. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mingrone G, van Baar AC, Deviere J, Hopkins D, Moura E, Cercato C, Rajagopalan H, Lopez-Talavera JC, White K, Bhambhani V, et al: Safety and efficacy of hydrothermal duodenal mucosal resurfacing in patients with type 2 diabetes: The randomised, double-blind, sham-controlled, multicentre REVITA-2 feasibility trial. Gut. 71:254–264. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hadefi A, Verset L, Pezzullo M, Rosewick N, Degre D, Gustot T, Moreno C, Devière J and Trépo E: Endoscopic duodenal mucosal resurfacing for nonalcoholic steatohepatitis (NASH): A pilot study. Endosc Int Open. 9:E1792–E1800. 2021. View Article : Google Scholar : PubMed/NCBI |