Selective protein degradation through chaperone‑mediated autophagy: Implications for cellular homeostasis and disease (Review)
- Authors:
- Jiahui Huang
- Jiazhen Wang
-
Affiliations: Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co‑Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China - Published online on: October 29, 2024 https://doi.org/10.3892/mmr.2024.13378
- Article Number: 13
-
Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
De Duve C and Wattiaux R: Functions of lysosomes. Annu Rev Physiol. 28:435–492. 1966. View Article : Google Scholar : PubMed/NCBI | |
Etlinger JD and Goldberg AL: A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc Natl Acad Sci USA. 74:54–58. 1977. View Article : Google Scholar : PubMed/NCBI | |
Bright NA, Davis LJ and Luzio JP: Endolysosomes are the principal intracellular sites of acid hydrolase activity. Curr Biol. 26:2233–2245. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N: Autophagy: Process and function. Genes Dev. 21:2861–2873. 2007. View Article : Google Scholar : PubMed/NCBI | |
Levine B and Kroemer G: Biological functions of autophagy genes: A disease perspective. Cell. 176:11–42. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ: Autophagy: From phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 8:931–937. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nakatogawa H: Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol. 21:439–458. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tsukada M and Ohsumi Y: Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333:169–174. 1993. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M and Ohsumi Y: A unified nomenclature for yeast autophagy-related genes. Dev Cell. 5:539–545. 2003. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, He D, Yao Z and Klionsky DJ: The machinery of macroautophagy. Cell Res. 24:24–41. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chan EYW, Longatti A, McKnight NC and Tooze SA: Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol. 29:157–171. 2009. View Article : Google Scholar : PubMed/NCBI | |
Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T and Ohsumi Y: The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20:5971–5981. 2001. View Article : Google Scholar : PubMed/NCBI | |
Griffey CJ and Yamamoto A: Macroautophagy in CNS health and disease. Nat Rev Neurosci. 23:411–427. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ and Reggiori F: An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol. 190:1005–1022. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL and Mizushima N: FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol. 181:497–510. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 20:1981–1991. 2009. View Article : Google Scholar : PubMed/NCBI | |
Weidberg H, Shvets E and Elazar Z: Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem. 80:125–156. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yokota S and Dariush Fahimi H: Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms. Histochem Cell Biol. 131:455–458. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA, Ney PA and Thompson CB: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 112:1493–1502. 2008. View Article : Google Scholar : PubMed/NCBI | |
Oku M and Sakai Y: Three distinct types of microautophagy based on membrane dynamics and molecular machineries. Bioessays. 40:e18000082018. View Article : Google Scholar : PubMed/NCBI | |
Uttenweiler A, Schwarz H, Neumann H and Mayer A: The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell. 18:166–175. 2007. View Article : Google Scholar : PubMed/NCBI | |
Uttenweiler A, Schwarz H and Mayer A: Microautophagic vacuole invagination requires calmodulin in a Ca2+-independent function. J Biol Chem. 280:33289–33297. 2005. View Article : Google Scholar : PubMed/NCBI | |
Müller O, Sattler T, Flötenmeyer M, Schwarz H, Plattner H and Mayer A: Autophagic tubes: Vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. J Cell Biol. 151:519–528. 2000. View Article : Google Scholar : PubMed/NCBI | |
Epple UD, Suriapranata I, Eskelinen EL and Thumm M: Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole. J Bacteriol. 183:5942–5955. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yang Z and Klionsky DJ: Permeases recycle amino acids resulting from autophagy. Autophagy. 3:149–150. 2007. View Article : Google Scholar : PubMed/NCBI | |
Roberts P, Moshitch-Moshkovitz S, Kvam E, O'Toole E, Winey M and Goldfarb DS: Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell. 14:129–141. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kawamura N, Sun-Wada GH, Aoyama M, Harada A, Takasuga S, Sasaki T and Wada Y: Delivery of endosomes to lysosomes via microautophagy in the visceral endoderm of mouse embryos. Nat Commun. 3:10712012. View Article : Google Scholar : PubMed/NCBI | |
Kaushik S and Cuervo AM: Chaperone-mediated autophagy: A unique way to enter the lysosome world. Trends Cell Biol. 22:407–417. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dice JF, Walker CD, Byrne B and Cardiel A: General characteristics of protein degradation in diabetes and starvation. Proc Natl Acad Sci USA. 75:2093–2097. 1978. View Article : Google Scholar : PubMed/NCBI | |
Backer JM and Dice JF: Covalent linkage of ribonuclease S-peptide to microinjected proteins causes their intracellular degradation to be enhanced during serum withdrawal. Proc Natl Acad Sci USA. 83:5830–5834. 1986. View Article : Google Scholar : PubMed/NCBI | |
Chiang HL and Dice JF: Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem. 263:6797–6805. 1988. View Article : Google Scholar : PubMed/NCBI | |
Chiang HL, Terlecky SR, Plant CP and Dice JF: A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 246:382–385. 1989. View Article : Google Scholar : PubMed/NCBI | |
Cuervo AM and Dice JF: A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 273:501–503. 1996. View Article : Google Scholar : PubMed/NCBI | |
Cuervo AM and Dice JF: Age-related decline in chaperone-mediated autophagy. J Biol Chem. 275:31505–31513. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dice JF, Chiang HL, Spencer EP and Backer JM: Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7–11 as the essential pentapeptide. J Biol Chem. 261:6853–6859. 1986. View Article : Google Scholar : PubMed/NCBI | |
Koga H, Martinez-Vicente M, Macian F, Verkhusha VV and Cuervo AM: A photoconvertible fluorescent reporter to track chaperone-mediated autophagy. Nat Commun. 2:3862011. View Article : Google Scholar : PubMed/NCBI | |
Dice JF: Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci. 15:305–309. 1990. View Article : Google Scholar : PubMed/NCBI | |
Kirchner P, Bourdenx M, Madrigal-Matute J, Tiano S, Diaz A, Bartholdy BA, Will B and Cuervo AM: Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biol. 17:e30003012019. View Article : Google Scholar : PubMed/NCBI | |
Glick BS: Can Hsp70 proteins act as force-generating motors? Cell. 80:11–14. 1995. View Article : Google Scholar : PubMed/NCBI | |
Bandyopadhyay U, Kaushik S, Varticovski L and Cuervo AM: The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol. 28:5747–5763. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gong Z, Tasset I, Diaz A, Anguiano J, Tas E, Cui L, Kuliawat R, Liu H, Kühn B, Cuervo AM and Muzumdar R: Humanin is an endogenous activator of chaperone-mediated autophagy. J Cell Biol. 217:635–647. 2018. View Article : Google Scholar : PubMed/NCBI | |
Massey AC, Kaushik S, Sovak G, Kiffin R and Cuervo AM: Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci USA. 103:5805–5810. 2006. View Article : Google Scholar : PubMed/NCBI | |
Majeski AE and Dice JF: Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol. 36:2435–2444. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bimston D, Song J, Winchester D, Takayama S, Reed JC and Morimoto RI: BAG-1, a negative regulator of Hsp70 chaperone activity, uncouples nucleotide hydrolysis from substrate release. EMBO J. 17:6871–6878. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gough NR, Hatem CL and Fambrough DM: The family of LAMP-2 proteins arises by alternative splicing from a single gene: Characterization of the avian LAMP-2 gene and identification of mammalian homologs of LAMP-2b and LAMP-2c. DNA Cell Biol. 14:863–867. 1995. View Article : Google Scholar : PubMed/NCBI | |
Chi C, Leonard A, Knight WE, Beussman KM, Zhao Y, Cao Y, Londono P, Aune E, Trembley MA, Small EM, et al: LAMP-2B regulates human cardiomyocyte function by mediating autophagosome-lysosome fusion. Proc Natl Acad Sci USA. 116:556–565. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fujiwara Y, Furuta A, Kikuchi H, Aizawa S, Hatanaka Y, Konya C, Uchida K, Yoshimura A, Tamai Y, Wada K and Kabuta T: Discovery of a novel type of autophagy targeting RNA. Autophagy. 9:403–409. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schnebert S, Goguet M, Vélez EJ, Depincé A, Beaumatin F, Herpin A and Seiliez I: Diving into the evolutionary history of HSC70-linked selective autophagy pathways: Endosomal microautophagy and chaperone-mediated autophagy. Cells. 11:19452022. View Article : Google Scholar : PubMed/NCBI | |
Cuervo AM and Dice JF: Regulation of lamp2a levels in the lysosomal membrane. Traffic. 1:570–583. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cuervo AM, Mann L, Bonten EJ, d'Azzo A and Dice JF: Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J. 22:47–59. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lüllmann-Rauch R, Janssen PM, Blanz J, von Figura K and Saftig P: Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature. 406:902–906. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ferreira JV, da Rosa Soares A, Ramalho J, Máximo Carvalho C, Cardoso MH, Pintado P, Carvalho AS, Beck HC, Matthiesen R, Zuzarte M, et al: LAMP2A regulates the loading of proteins into exosomes. Sci Adv. 8:eabm11402022. View Article : Google Scholar : PubMed/NCBI | |
Kaushik S, Massey AC and Cuervo AM: Lysosome membrane lipid microdomains: Novel regulators of chaperone-mediated autophagy. EMBO J. 25:3921–3933. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kaushik S and Cuervo AM: The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 19:365–381. 2018. View Article : Google Scholar : PubMed/NCBI | |
Duong V and Rochette-Egly C: The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim Biophys Acta. 1812:1023–1031. 2011. View Article : Google Scholar : PubMed/NCBI | |
Anguiano J, Garner TP, Mahalingam M, Das BC, Gavathiotis E and Cuervo AM: Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nat Chem Biol. 9:374–382. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gomez-Sintes R, Xin Q, Jimenez-Loygorri JI, McCabe M, Diaz A, Garner TP, Cotto-Rios XM, Wu Y, Dong S, Reynolds CA, et al: Targeting retinoic acid receptor alpha-corepressor interaction activates chaperone-mediated autophagy and protects against retinal degeneration. Nat Commun. 13:42202022. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Liu B, Li Y, Zhang Y, Shao J, Wu P, Xu C, Chen G and Shi H: Activation of RARα receptor attenuates neuroinflammation after SAH via promoting M1-to-M2 phenotypic polarization of microglia and regulating Mafb/Msr1/PI3K-Akt/NF-κB pathway. Front Immunol. 13:8397962022. View Article : Google Scholar : PubMed/NCBI | |
Alers S, Löffler AS, Wesselborg S and Stork B: Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks. Mol Cell Biol. 32:2–11. 2012. View Article : Google Scholar : PubMed/NCBI | |
Carling D: AMPK signalling in health and disease. Curr Opin Cell Biol. 45:31–37. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Zhu S, Li J, Jiang T, Feng L, Pei J, Wang G, Ouyang L and Liu B: Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson's disease. Acta Pharm Sin B. 11:3015–3034. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kaushik S and Cuervo AM: Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol. 17:759–770. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schweiger M and Zechner R: Breaking the barrier-chaperone-mediated autophagy of perilipins regulates the lipolytic degradation of fat. Cell Metab. 22:60–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Liu J, Shen S, Tong Q, Ma X and Lin L: SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity. Cell Death Differ. 27:329–344. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Liu J, Tong Q and Lin L: SIRT3 Acts as a positive autophagy regulator to promote lipid mobilization in adipocytes via activating AMPK. Int J Mol Sci. 21:3722020. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zhu J, Dou J, She H, Tao K, Xu H, Yang Q and Mao Z: Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. Nat Commun. 8:17632017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Cai J, Zhao X, Ma L, Zeng P, Zhou L, Liu Y, Yang S, Cai Z, Zhang S, et al: Palmitoylation prevents sustained inflammation by limiting NLRP3 inflammasome activation through chaperone-mediated autophagy. Mol Cell. 83:281–297.e10. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Mao K, Yu H, Wen Y, She H, Zhang H, Liu L, Li M, Li W and Zou F: p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease. J Neuroinflammation. 18:2952021. View Article : Google Scholar : PubMed/NCBI | |
Song JX, Liu J, Jiang Y, Wang ZY and Li M: Transcription factor EB: An emerging drug target for neurodegenerative disorders. Drug Discov Today. 26:164–172. 2021. View Article : Google Scholar : PubMed/NCBI | |
Valdor R, Mocholi E, Botbol Y, Guerrero-Ros I, Chandra D, Koga H, Gravekamp C, Cuervo AM and Macian F: Chaperone-mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activation. Nat Immunol. 15:1046–1054. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bader AG, Kang S, Zhao L and Vogt PK: Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer. 5:921–929. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Lu L, Luo N, Wang YQ and Gao HM: Inhibition of PI3K/AKt/mTOR signaling pathway protects against d-galactosamine/lipopolysaccharide-induced acute liver failure by chaperone-mediated autophagy in rats. Biomed Pharmacother. 92:544–553. 2017. View Article : Google Scholar : PubMed/NCBI | |
Endicott SJ, Ziemba ZJ, Beckmann LJ, Boynton DN and Miller RA: Inhibition of class I PI3K enhances chaperone-mediated autophagy. J Cell Biol. 219:e2020010312020. View Article : Google Scholar : PubMed/NCBI | |
He Q, Qin R, Glowacki J, Zhou S, Shi J, Wang S, Gao Y and Cheng L: Synergistic stimulation of osteoblast differentiation of rat mesenchymal stem cells by leptin and 25(OH)D3 is mediated by inhibition of chaperone-mediated autophagy. Stem Cell Res Ther. 12:5572021. View Article : Google Scholar : PubMed/NCBI | |
Bourdenx M, Gavathiotis E and Cuervo AM: Chaperone-mediated autophagy: A gatekeeper of neuronal proteostasis. Autophagy. 17:2040–2042. 2021. View Article : Google Scholar : PubMed/NCBI | |
Andrade-Tomaz M, de Souza I, Rocha CRR and Gomes LR: The role of chaperone-mediated autophagy in cell cycle control and its implications in cancer. Cells. 9:21402020. View Article : Google Scholar : PubMed/NCBI | |
Arias E and Cuervo AM: Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol. 23:184–189. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li W, Nie T, Xu H, Yang J, Yang Q and Mao Z: Chaperone-mediated autophagy: Advances from bench to bedside. Neurobiol Dis. 122:41–48. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H and Yuan J: Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA. 116:2996–3005. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu K, Yan M, Liu T, Wang Z, Duan Y, Xia Y, Ji G, Shen Y, Wang L, Li L, et al: Creatine kinase B suppresses ferroptosis by phosphorylating GPX4 through a moonlighting function. Nat Cell Biol. 25:714–725. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Li Z, Zhang Q, Wang R, Zhao Z, Ding W, Wang F, Sun C, Tang J, Wang X, et al: GPX4 degradation via chaperone-mediated autophagy contributes to antimony-triggered neuronal ferroptosis. Ecotoxicol Environ Saf. 234:1134132022. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Wang D, Yu Y, Zhao T, Min N, Wu Y, Kang L, Zhao Y, Du L, Zhang M, et al: Legumain promotes tubular ferroptosis by facilitating chaperone-mediated autophagy of GPX4 in AKI. Cell Death Dis. 12:652021. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Sun W, Zhu T, Shi S, Zhang J, Wang J, Gao F, Ou Q, Jin C, Li J, et al: Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy. Redox Biol. 52:1022922022. View Article : Google Scholar : PubMed/NCBI | |
Xie W, Zhang L, Jiao H, Guan L, Zha J, Li X, Wu M, Wang Z, Han J and You H: Chaperone-mediated autophagy prevents apoptosis by degrading BBC3/PUMA. Autophagy. 11:1623–1635. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kiffin R, Christian C, Knecht E and Cuervo AM: Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell. 15:4829–4840. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cuervo AM, Hildebrand H, Bomhard EM and Dice JF: Direct lysosomal uptake of alpha 2-microglobulin contributes to chemically induced nephropathy. Kidney Int. 55:529–545. 1999. View Article : Google Scholar : PubMed/NCBI | |
Schneider JL, Villarroya J, Diaz-Carretero A, Patel B, Urbanska AM, Thi MM, Villarroya F, Santambrogio L and Cuervo AM: Loss of hepatic chaperone-mediated autophagy accelerates proteostasis failure in aging. Aging Cell. 14:249–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kaushik S, Juste YR and Cuervo AM: Circadian remodeling of the proteome by chaperone-mediated autophagy. Autophagy. 18:1205–1207. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hao Y, Kacal M, Ouchida AT, Zhang B, Norberg E and Vakifahmetoglu-Norberg H: Targetome analysis of chaperone-mediated autophagy in cancer cells. Autophagy. 15:1558–1571. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dong S, Wang Q, Kao YR, Diaz A, Tasset I, Kaushik S, Thiruthuvanathan V, Zintiridou A, Nieves E, Dzieciatkowska M, et al: Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature. 591:117–123. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y, et al: Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell. 42:719–730. 2011. View Article : Google Scholar : PubMed/NCBI | |
Susan PP and Dunn WA Jr: Starvation-induced lysosomal degradation of aldolase B requires glutamine 111 in a signal sequence for chaperone-mediated transport. J Cell Physiol. 187:48–58. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schneider JL, Suh Y and Cuervo AM: Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab. 20:417–432. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Zhang Y, García-Cañaveras JC, Guo L, Kan M, Yu S, Blair IA, Rabinowitz JD and Yang X: Chaperone-mediated autophagy regulates the pluripotency of embryonic stem cells. Science. 369:397–403. 2020. View Article : Google Scholar : PubMed/NCBI | |
TeSlaa T, Chaikovsky AC, Lipchina I, Escobar SL, Hochedlinger K, Huang J, Graeber TG, Braas D and Teitell MA: α-Ketoglutarate accelerates the initial differentiation of primed human pluripotent stem cells. Cell Metab. 24:485–493. 2016. View Article : Google Scholar : PubMed/NCBI | |
Carey BW, Finley LW, Cross JR, Allis CD and Thompson CB: Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature. 518:413–416. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tasset I and Cuervo AM: Role of chaperone-mediated autophagy in metabolism. FEBS J. 283:2403–2413. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kaushik S, Juste YR, Lindenau K, Dong S, Macho-González A, Santiago-Fernández O, McCabe M, Singh R, Gavathiotis E and Cuervo AM: Chaperone-mediated autophagy regulates adipocyte differentiation. Sci Adv. 8:eabq27332022. View Article : Google Scholar : PubMed/NCBI | |
Schroeder B, Schulze RJ, Weller SG, Sletten AC, Casey CA and McNiven MA: The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology. 61:1896–1907. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Navarro JA, Kaushik S, Koga H, Dall'Armi C, Shui G, Wenk MR, Di Paolo G and Cuervo AM: Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc Natl Acad Sci USA. 109:E705–E714. 2012. View Article : Google Scholar : PubMed/NCBI | |
García-Gutiérrez L, Delgado MD and León J: MYC oncogene contributions to release of cell cycle brakes. Genes (Basel). 10:2442019. View Article : Google Scholar : PubMed/NCBI | |
Gomes LR, Menck CFM and Cuervo AM: Chaperone-mediated autophagy prevents cellular transformation by regulating MYC proteasomal degradation. Autophagy. 13:928–940. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Yang J, Fan X, Hu S, Zhou F, Dong J, Zhang S, Shang Y, Jiang X, Guo H, et al: Chaperone-mediated autophagy regulates proliferation by targeting RND3 in gastric cancer. Autophagy. 12:515–528. 2016. View Article : Google Scholar : PubMed/NCBI | |
Patil M, Pabla N and Dong Z: Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cell Mol Life Sci. 70:4009–4021. 2013. View Article : Google Scholar : PubMed/NCBI | |
Park C, Suh Y and Cuervo AM: Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat Commun. 6:68232015. View Article : Google Scholar : PubMed/NCBI | |
Hubbi ME, Gilkes DM, Hu H, Kshitiz Ahmed I and Semenza GL: Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1α to promote cell-cycle progression. Proc Natl Acad Sci USA. 111:E3325–E3334. 2014. View Article : Google Scholar : PubMed/NCBI | |
Spence J, Sadis S, Haas AL and Finley D: A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol. 15:1265–1273. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ferreira JV, Soares AR, Ramalho JS, Pereira P and Girao H: K63 linked ubiquitin chain formation is a signal for HIF1A degradation by chaperone-mediated autophagy. Sci Rep. 5:102102015. View Article : Google Scholar : PubMed/NCBI | |
Ferreira JV, Fôfo H, Bejarano E, Bento CF, Ramalho JS, Girão H and Pereira P: STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy. 9:1349–1366. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jin C, Ou Q, Chen J, Wang T, Zhang J, Wang Z, Wang Y, Tian H, Xu JY, Gao F, et al: Chaperone-mediated autophagy plays an important role in regulating retinal progenitor cell homeostasis. Stem Cell Res Ther. 13:1362022. View Article : Google Scholar : PubMed/NCBI | |
Tan J, Wang W, Liu X, Xu J, Che Y, Liu Y, Hu J, Hu L, Li J and Zhou Q: C11orf54 promotes DNA repair via blocking CMA-mediated degradation of HIF1A. Commun Biol. 6:6062023. View Article : Google Scholar : PubMed/NCBI | |
Gong Y, Li Z, Zou S, Deng D, Lai P, Hu H, Yao Y, Hu L, Zhang S, Li K, et al: Vangl2 limits chaperone-mediated autophagy to balance osteogenic differentiation in mesenchymal stem cells. Dev Cell. 56:2103–2120.e9. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, He S, Huang L, Ren D, Nie T, Tao K, Xia L, Lu F, Mao Z and Yang Q: Chaperone-mediated autophagy degrades Keap1 and promotes Nrf2-mediated antioxidative response. Aging Cell. 21:e136162022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Sun Y, Fei M, Tan C, Wu J, Zheng J, Tang J, Sun W, Lv Z, Bao J, et al: Disruption of chaperone-mediated autophagy-dependent degradation of MEF2A by oxidative stress-induced lysosome destabilization. Autophagy. 10:1015–1035. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kahle PJ, Waak J and Gasser T: DJ-1 and prevention of oxidative stress in Parkinson's disease and other age-related disorders. Free Radic Biol Med. 47:1354–1361. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Cai Z, Tao K, Zeng W, Lu F, Yang R, Feng D, Gao G and Yang Q: Essential control of mitochondrial morphology and function by chaperone-mediated autophagy through degradation of PARK7. Autophagy. 12:1215–1228. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nie T, Tao K, Zhu L, Huang L, Hu S, Yang R, Xu P, Mao Z and Yang Q: Chaperone-mediated autophagy controls the turnover of E3 ubiquitin ligase MARCHF5 and regulates mitochondrial dynamics. Autophagy. 17:2923–2938. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kiffin R, Kaushik S, Zeng M, Bandyopadhyay U, Zhang C, Massey AC, Martinez-Vicente M and Cuervo AM: Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J Cell Sci. 120:782–791. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang C and Cuervo AM: Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med. 14:959–965. 2008. View Article : Google Scholar : PubMed/NCBI | |
Unno K, Asakura H, Shibuya Y, Kaiho M, Okada S and Oku N: Increase in basal level of Hsp70, consisting chiefly of constitutively expressed Hsp70 (Hsc70) in aged rat brain. J Gerontol A Biol Sci Med Sci. 55:B329–B335. 2000. View Article : Google Scholar : PubMed/NCBI | |
Calabrese V, Scapagnini G, Ravagna A, Colombrita C, Spadaro F, Butterfield DA and Giuffrida Stella AM: Increased expression of heat shock proteins in rat brain during aging: Relationship with mitochondrial function and glutathione redox state. Mech Ageing Dev. 125:325–335. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gleixner AM, Pulugulla SH, Pant DB, Posimo JM, Crum TS and Leak RK: Impact of aging on heat shock protein expression in the substantia nigra and striatum of the female rat. Cell Tissue Res. 357:43–54. 2014. View Article : Google Scholar : PubMed/NCBI | |
Loeffler DA: Influence of normal aging on brain autophagy: A complex scenario. Front Aging Neurosci. 11:492019. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Xu J, Pang S, Bai B and Yan B: Age-related decrease of the LAMP-2 gene expression in human leukocytes. Clin Biochem. 45:1229–1232. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Chong SY, Lim A, Singh BK, Sinha RA, Salmon AB and Yen PM: Changes in macroautophagy, chaperone-mediated autophagy, and mitochondrial metabolism in murine skeletal and cardiac muscle during aging. Aging (Albany NY). 9:583–599. 2017. View Article : Google Scholar : PubMed/NCBI | |
Muñoz-Espín D and Serrano M: Cellular senescence: From physiology to pathology. Nat Rev Mol Cell Biol. 15:482–496. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rovira M, Sereda R, Pladevall-Morera D, Ramponi V, Marin I, Maus M, Madrigal-Matute J, Díaz A, García F, Muñoz J, et al: The lysosomal proteome of senescent cells contributes to the senescence secretome. Aging Cell. 21:e137072022. View Article : Google Scholar : PubMed/NCBI | |
Ye W, Xu K, Huang D, Liang A, Peng Y, Zhu W and Li C: Age-related increases of macroautophagy and chaperone-mediated autophagy in rat nucleus pulposus. Connect Tissue Res. 52:472–478. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kang HT, Lee KB, Kim SY, Choi HR and Park SC: Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS One. 6:e233672011. View Article : Google Scholar : PubMed/NCBI | |
Hubbi ME and Semenza GL: An essential role for chaperone-mediated autophagy in cell cycle progression. Autophagy. 11:850–851. 2015. View Article : Google Scholar : PubMed/NCBI | |
Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC and Huang LE: HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J. 23:1949–1956. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Wang L, He H, Liu Y, Jiang Y and Yang J: The complex role of chaperone-mediated autophagy in cancer diseases. Biomedicines. 11:20502023. View Article : Google Scholar : PubMed/NCBI | |
Koga H and Cuervo AM: Chaperone-mediated autophagy dysfunction in the pathogenesis of neurodegeneration. Neurobiol Dis. 43:29–37. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hosaka Y, Araya J, Fujita Y and Kuwano K: Role of chaperone-mediated autophagy in the pathophysiology including pulmonary disorders. Inflamm Regen. 41:292021. View Article : Google Scholar : PubMed/NCBI | |
Qiao L, Ma J, Zhang Z, Sui W, Zhai C, Xu D, Wang Z, Lu H, Zhang M, Zhang C, et al: Deficient chaperone-mediated autophagy promotes inflammation and atherosclerosis. Circ Res. 129:1141–1157. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mastoridou EM, Goussia AC, Kanavaros P and Charchanti AV: Involvement of lipophagy and chaperone-mediated autophagy in the pathogenesis of non-alcoholic fatty liver disease by regulation of lipid droplets. Int J Mol Sci. 24:158912023. View Article : Google Scholar : PubMed/NCBI | |
Franch HA: Chaperone-mediated autophagy in the kidney: The road more traveled. Semin Nephrol. 34:72–83. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kon M, Kiffin R, Koga H, Chapochnick J, Macian F, Varticovski L and Cuervo AM: Chaperone-mediated autophagy is required for tumor growth. Sci Transl Med. 3:109ra1172011. View Article : Google Scholar : PubMed/NCBI | |
Nguyen D, Yang K, Chiao L, Deng Y, Zhou X, Zhang Z, Zeng SX and Lu H: Inhibition of tumor suppressor p73 by nerve growth factor receptor via chaperone-mediated autophagy. J Mol Cell Biol. 12:700–712. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Liu Y, Liu L, Chen M, Wang X, Yang J, Gong Y, Ding BS, Wei Y and Wei X: Tumor cells induce LAMP2a expression in tumor-associated macrophage for cancer progression. EBioMedicine. 40:118–134. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ding ZB, Fu XT, Shi YH, Zhou J, Peng YF, Liu WR, Shi GM, Gao Q, Wang XY, Song K, et al: Lamp2a is required for tumor growth and promotes tumor recurrence of hepatocellular carcinoma. Int J Oncol. 49:2367–2376. 2016. View Article : Google Scholar : PubMed/NCBI | |
Desideri E, Castelli S, Dorard C, Toifl S, Grazi GL, Ciriolo MR and Baccarini M: Impaired degradation of YAP1 and IL6ST by chaperone-mediated autophagy promotes proliferation and migration of normal and hepatocellular carcinoma cells. Autophagy. 19:152–162. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shi YH, Ding ZB, Zhou J, Qiu SJ and Fan J: Prognostic significance of beclin 1-dependent apoptotic activity in hepatocellular carcinoma. Autophagy. 5:380–382. 2009. View Article : Google Scholar : PubMed/NCBI | |
Al-Shenawy HAS: Expression of beclin-1, an autophagy-related marker, in chronic hepatitis and hepatocellular carcinoma and its relation with apoptotic markers. APMIS. 124:229–237. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, et al: Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 112:1809–1820. 2003. View Article : Google Scholar : PubMed/NCBI | |
Aydin Y, Stephens CM, Chava S, Heidari Z, Panigrahi R, Williams DD, Wiltz K, Bell A, Wilson W, Reiss K and Dash S: Chaperone-mediated autophagy promotes beclin1 degradation in persistently infected hepatitis C virus cell culture. Am J Pathol. 188:2339–2355. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ichikawa A, Fujita Y, Hosaka Y, Kadota T, Ito A, Yagishita S, Watanabe N, Fujimoto S, Kawamoto H, Saito N, et al: Chaperone-mediated autophagy receptor modulates tumor growth and chemoresistance in non-small cell lung cancer. Cancer Sci. 111:4154–4165. 2020. View Article : Google Scholar : PubMed/NCBI | |
Suzuki J, Nakajima W, Suzuki H, Asano Y and Tanaka N: Chaperone-mediated autophagy promotes lung cancer cell survival through selective stabilization of the pro-survival protein, MCL1. Biochem Biophys Res Commun. 482:1334–1340. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ali AB, Nin DS, Tam J and Khan M: Role of chaperone mediated autophagy (CMA) in the degradation of misfolded N-CoR protein in non-small cell lung cancer (NSCLC) cells. PLoS One. 6:e252682011. View Article : Google Scholar : PubMed/NCBI | |
Du C, Huang D, Peng Y, Yao Y, Zhao Y, Yang Y, Wang H, Cao L, Zhu WG and Gu J: 5-Fluorouracil targets histone acetyltransferases p300/CBP in the treatment of colorectal cancer. Cancer Lett. 400:183–193. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li P, Ji M, Lu F, Zhang J, Li H, Cui T, Li Wang X, Tang D and Ji C: Degradation of AF1Q by chaperone-mediated autophagy. Exp Cell Res. 327:48–56. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Hou T, Gao Y, Dan W, Liu T, Liu B, Chen Y, Xie H, Yang Z, Chen J, et al: Acetylation-dependent regulation of TPD52 isoform 1 modulates chaperone-mediated autophagy in prostate cancer. Autophagy. 17:4386–4400. 2021. View Article : Google Scholar : PubMed/NCBI | |
Losmanova T, Zens P, Scherz A, Schmid RA, Tschan MP and Berezowska S: Chaperone-mediated autophagy markers LAMP2A and HSPA8 in advanced non-small cell lung cancer after neoadjuvant therapy. Cells. 10:27312021. View Article : Google Scholar : PubMed/NCBI | |
Hubbi ME, Hu H, Kshitiz Ahmed I, Levchenko A and Semenza GL: Chaperone-mediated autophagy targets hypoxia-inducible factor-1α (HIF-1α) for lysosomal degradation. J Biol Chem. 288:10703–10714. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dice JF: Altered degradation of proteins microinjected into senescent human fibroblasts. J Biol Chem. 257:14624–14627. 1982. View Article : Google Scholar : PubMed/NCBI | |
Valdor R, García-Bernal D, Riquelme D, Martinez CM, Moraleda JM, Cuervo AM, Macian F and Martinez S: Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of chaperone-mediated autophagy. Proc Natl Acad Sci USA. 116:20655–20665. 2019. View Article : Google Scholar : PubMed/NCBI | |
Arias E and Cuervo AM: Pros and cons of chaperone-mediated autophagy in cancer biology. Trends Endocrinol Metab. 31:53–66. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu TL, Huang GJ, Wang HJ, Chen JL, Hsu HP and Lu TJ: Hispolon promotes MDM2 downregulation through chaperone-mediated autophagy. Biochem Biophys Res Commun. 398:26–31. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bonhoure A, Vallentin A, Martin M, Senff-Ribeiro A, Amson R, Telerman A and Vidal M: Acetylation of translationally controlled tumor protein promotes its degradation through chaperone-mediated autophagy. Eur J Cell Biol. 96:83–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Xie HY, Yang LF, Zhang L, Zhang FL, Liu HY, Li DQ and Shao ZM: Stabilization of MORC2 by estrogen and antiestrogens through GPER1-PRKACA-CMA pathway contributes to estrogen-induced proliferation and endocrine resistance of breast cancer cells. Autophagy. 16:1061–1076. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sohn EJ, Kim JH, Oh SO and Kim JY: Regulation of self-renewal in ovarian cancer stem cells by fructose via chaperone-mediated autophagy. Biochim Biophys Acta Mol Basis Dis. 1869:1667232023. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Zhan MN, Yin QQ, Zhou CX, Wang CL, Wo LL, He M, Chen GQ and Zhao Q: Impaired p65 degradation by decreased chaperone-mediated autophagy activity facilitates epithelial-to-mesenchymal transition. Oncogenesis. 6:e3872017. View Article : Google Scholar : PubMed/NCBI | |
Cuervo AM and Wong E: Chaperone-mediated autophagy: Roles in disease and aging. Cell Res. 24:92–104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, et al: Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci. 16:394–406. 2013. View Article : Google Scholar : PubMed/NCBI | |
Andersson FI, Werrell EF, McMorran L, Crone WJ, Das C, Hsu ST and Jackson SE: The effect of Parkinson's-disease-associated mutations on the deubiquitinating enzyme UCH-L1. J Mol Biol. 407:261–272. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang YT and Lu JH: Chaperone-mediated autophagy in neurodegenerative diseases: Molecular mechanisms and pharmacological opportunities. Cells. 11:22502022. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, et al: Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest. 118:777–788. 2008.PubMed/NCBI | |
Tang FL, Erion JR, Tian Y, Liu W, Yin DM, Ye J, Tang B, Mei L and Xiong WC: VPS35 in dopamine neurons is required for endosome-to-golgi retrieval of Lamp2a, a receptor of chaperone-mediated autophagy that is critical for α-synuclein degradation and prevention of pathogenesis of Parkinson's disease. J Neurosci. 35:10613–10628. 2015. View Article : Google Scholar : PubMed/NCBI | |
Scrivo A, Bourdenx M, Pampliega O and Cuervo AM: Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol. 17:802–815. 2018. View Article : Google Scholar : PubMed/NCBI | |
Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J and van der Flier WM: Alzheimer's disease. Lancet. 397:1577–1590. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Nishimura I, Imai Y, Takahashi R and Lu B: Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron. 37:911–924. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dou F, Netzer WJ, Tanemura K, Li F, Hartl FU, Takashima A, Gouras GK, Greengard P and Xu H: Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci USA. 100:721–726. 2003. View Article : Google Scholar : PubMed/NCBI | |
Auluck PK, Chan HYE, Trojanowski JQ, Lee VMY and Bonini NM: Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science. 295:865–868. 2002. View Article : Google Scholar : PubMed/NCBI | |
Caballero B, Wang Y, Diaz A, Tasset I, Juste YR, Stiller B, Mandelkow EM, Mandelkow E and Cuervo AM: Interplay of pathogenic forms of human tau with different autophagic pathways. Aging Cell. 17:e126922018. View Article : Google Scholar : PubMed/NCBI | |
Caballero B, Bourdenx M, Luengo E, Diaz A, Sohn PD, Chen X, Wang C, Juste YR, Wegmann S, Patel B, et al: Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat Commun. 12:22382021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Martinez-Vicente M, Krüger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM and Mandelkow E: Tau fragmentation, aggregation and clearance: The dual role of lysosomal processing. Hum Mol Genet. 18:4153–4170. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wang P, Song W and Sun X: Degradation of regulator of calcineurin 1 (RCAN1) is mediated by both chaperone-mediated autophagy and ubiquitin proteasome pathways. FASEB J. 23:3383–3392. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kalia LV and Lang AE: Parkinson's disease. Lancet. 386:896–912. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA and Schapira AH: Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol. 67:1464–1472. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT and Sulzer D: Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 305:1292–1295. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, She H, Gearing M, Colla E, Lee M, Shacka JJ and Mao Z: Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science. 323:124–127. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang Q and Mao Z: The complexity in regulation of MEF2D by chaperone-mediated autophagy. Autophagy. 5:1073–1074. 2009. View Article : Google Scholar : PubMed/NCBI | |
Setsuie R, Wang YL, Mochizuki H, Osaka H, Hayakawa H, Ichihara N, Li H, Furuta A, Sano Y, Sun YJ, et al: Dopaminergic neuronal loss in transgenic mice expressing the Parkinson's disease-associated UCH-L1 I93M mutant. Neurochem Int. 50:119–129. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kabuta T, Furuta A, Aoki S, Furuta K and Wada K: Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem. 283:23731–23738. 2008. View Article : Google Scholar : PubMed/NCBI | |
Freibaum BD, Chitta RK, High AA and Taylor JP: Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res. 9:1104–1120. 2010. View Article : Google Scholar : PubMed/NCBI | |
Coyne AN, Lorenzini I, Chou CC, Torvund M, Rogers RS, Starr A, Zaepfel BL, Levy J, Johannesmeyer J, Schwartz JC, et al: Post-transcriptional inhibition of Hsc70-4/HSPA8 expression leads to synaptic vesicle cycling defects in multiple models of ALS. Cell Rep. 21:110–125. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang CC, Bose JK, Majumder P, Lee KH, Huang JT, Huang JK and Shen CK: Metabolism and mis-metabolism of the neuropathological signature protein TDP-43. J Cell Sci. 127:3024–3038. 2014.PubMed/NCBI | |
Ormeño F, Hormazabal J, Moreno J, Riquelme F, Rios J, Criollo A, Albornoz A, Alfaro IE and Budini M: Chaperone mediated autophagy degrades TDP-43 protein and is affected by TDP-43 aggregation. Front Mol Neurosci. 13:192020. View Article : Google Scholar : PubMed/NCBI | |
Arosio A, Cristofani R, Pansarasa O, Crippa V, Riva C, Sirtori R, Rodriguez-Menendez V, Riva N, Gerardi F, Lunetta C, et al: HSC70 expression is reduced in lymphomonocytes of sporadic ALS patients and contributes to TDP-43 accumulation. Amyotroph Lateral Scler Frontotemporal Degener. 21:51–62. 2020. View Article : Google Scholar : PubMed/NCBI | |
Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A, Martinez-Vincente M, Arrasate M, O'Rourke JG, Khashwji H, et al: IKK phosphorylates huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol. 187:1083–1099. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jana NR, Tanaka M, Wang G and Nukina N: Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: Their role in suppression of aggregation and cellular toxicity. Hum Mol Genet. 9:2009–2018. 2000. View Article : Google Scholar : PubMed/NCBI | |
Adachi H, Katsuno M, Minamiyama M, Sang C, Pagoulatos G, Angelidis C, Kusakabe M, Yoshiki A, Kobayashi Y, Doyu M and Sobue G: Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci. 23:2203–2211. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hay DG, Sathasivam K, Tobaben S, Stahl B, Marber M, Mestril R, Mahal A, Smith DL, Woodman B and Bates GP: Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet. 13:1389–1405. 2004. View Article : Google Scholar : PubMed/NCBI | |
Qi L and Zhang XD: Role of chaperone-mediated autophagy in degrading Huntington's disease-associated huntingtin protein. Acta Biochim Biophys Sin (Shanghai). 46:83–91. 2014. View Article : Google Scholar : PubMed/NCBI | |
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, et al: Heart disease and stroke statistics-2021 update: A report from the american heart association. Circulation. 143:e254–e743. 2021. View Article : Google Scholar : PubMed/NCBI | |
Madrigal-Matute J, de Bruijn J, van Kuijk K, Riascos-Bernal DF, Diaz A, Tasset I, Martín-Segura A, Gijbels MJJ, Sander B, Kaushik S, et al: Protective role of chaperone-mediated autophagy against atherosclerosis. Proc Natl Acad Sci USA. 119:e21211331192022. View Article : Google Scholar : PubMed/NCBI | |
Madrigal-Matute J, Cuervo AM and Sluimer JC: Chaperone-mediated autophagy protects against atherosclerosis. Autophagy. 18:2505–2507. 2022. View Article : Google Scholar : PubMed/NCBI | |
Subramani J, Kundumani-Sridharan V and Das KC: Chaperone-mediated autophagy of eNOS in myocardial ischemia-reperfusion injury. Circ Res. 129:930–945. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ghosh R, Gillaspie JJ, Campbell KS, Symons JD, Boudina S and Pattison JS: Chaperone-mediated autophagy protects cardiomyocytes against hypoxic-cell death. Am J Physiol Cell Physiol. 323:C1555–C1575. 2022. View Article : Google Scholar : PubMed/NCBI | |
GBD 2017 Causes of Death Collaborators, . Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the global burden of disease study 2017. Lancet. 392:1736–1788. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sebastiani G, Gkouvatsos K and Pantopoulos K: Chronic hepatitis C and liver fibrosis. World J Gastroenterol. 20:11033–11053. 2014. View Article : Google Scholar : PubMed/NCBI | |
Blight KJ, Kolykhalov AA and Rice CM: Efficient initiation of HCV RNA replication in cell culture. Science. 290:1972–1974. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lohmann V, Körner F, Koch J, Herian U, Theilmann L and Bartenschlager R: Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science. 285:110–113. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kurt R, Chandra PK, Aboulnasr F, Panigrahi R, Ferraris P, Aydin Y, Reiss K, Wu T, Balart LA and Dash S: Chaperone-mediated autophagy targets IFNAR1 for lysosomal degradation in free fatty acid treated HCV cell culture. PLoS One. 10:e01259622015. View Article : Google Scholar : PubMed/NCBI | |
Matsui C, Deng L, Minami N, Abe T, Koike K and Shoji I: Hepatitis C virus NS5A protein promotes the lysosomal degradation of hepatocyte nuclear factor 1α via chaperone-mediated autophagy. J Virol. 92:e00639–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Matsui C, Shoji I, Kaneda S, Sianipar IR, Deng L and Hotta H: Hepatitis C virus infection suppresses GLUT2 gene expression via downregulation of hepatocyte nuclear factor 1α. J Virol. 86:12903–12911. 2012. View Article : Google Scholar : PubMed/NCBI | |
You Y, Li WZ, Zhang S, Hu B, Li YX, Li HD, Tang HH, Li QW, Guan YY, Liu LX, et al: SNX10 mediates alcohol-induced liver injury and steatosis by regulating the activation of chaperone-mediated autophagy. J Hepatol. 69:129–141. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sooparb S, Price SR, Shaoguang J and Franch HA: Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int. 65:2135–2144. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wing SS, Chiang HL, Goldberg AL and Dice JF: Proteins containing peptide sequences related to Lys-Phe-Glu-Arg-Gln are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats. Biochem J. 275:165–169. 1991. View Article : Google Scholar : PubMed/NCBI | |
Napolitano G, Johnson JL, He J, Rocca CJ, Monfregola J, Pestonjamasp K, Cherqui S and Catz SD: Impairment of chaperone-mediated autophagy leads to selective lysosomal degradation defects in the lysosomal storage disease cystinosis. EMBO Mol Med. 7:158–174. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee CH, Lee KH, Jang AH and Yoo CG: The impact of autophagy on the cigarette smoke extract-induced apoptosis of bronchial epithelial cells. Tuberc Respir Dis (Seoul). 80:83–89. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kelsen SG: The unfolded protein response in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 13 (Suppl 2):S138–S145. 2016.PubMed/NCBI | |
Hosaka Y, Araya J, Fujita Y, Kadota T, Tsubouchi K, Yoshida M, Minagawa S, Hara H, Kawamoto H, Watanabe N, et al: Chaperone-mediated autophagy suppresses apoptosis via regulation of the unfolded protein response during chronic obstructive pulmonary disease pathogenesis. J Immunol. 205:1256–1267. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fujii S, Hara H, Araya J, Takasaka N, Kojima J, Ito S, Minagawa S, Yumino Y, Ishikawa T, Numata T, et al: Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology. 1:630–641. 2012. View Article : Google Scholar : PubMed/NCBI | |
Regitz C, Fitzenberger E, Mahn FL, Dußling LM and Wenzel U: Resveratrol reduces amyloid-beta (Aβ1-42)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur J Nutr. 55:741–747. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu JZ, Ardah M, Haikal C, Svanbergsson A, Diepenbroek M, Vaikath NN, Li W, Wang ZY, Outeiro TF, El-Agnaf OM and Li JY: Dihydromyricetin and salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy. Transl Neurodegener. 8:182019. View Article : Google Scholar : PubMed/NCBI | |
Luan Y, Ren X, Zheng W, Zeng Z, Guo Y, Hou Z, Guo W, Chen X, Li F and Chen JF: Chronic caffeine treatment protects against α-synucleinopathy by reestablishing autophagy activity in the mouse striatum. Front Neurosci. 12:3012018. View Article : Google Scholar : PubMed/NCBI | |
Sotelo J, Briceño E and López-González MA: Adding chloroquine to conventional treatment for glioblastoma multiforme: A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 144:337–343. 2006. View Article : Google Scholar : PubMed/NCBI | |
Galan-Acosta L, Xia H, Yuan J and Vakifahmetoglu-Norberg H: Activation of chaperone-mediated autophagy as a potential anticancer therapy. Autophagy. 11:2370–2371. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang F and Muller S: Manipulating autophagic processes in autoimmune diseases: A special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target. Front Immunol. 6:2522015. View Article : Google Scholar : PubMed/NCBI | |
Maueröder C, Schall N, Meyer F, Mahajan A, Garnier B, Hahn J, Kienhöfer D, Hoffmann MH and Muller S: Capability of neutrophils to form NETs is not directly influenced by a CMA-targeting peptide. Front Immunol. 8:162017. View Article : Google Scholar : PubMed/NCBI | |
Rusmini P, Cortese K, Crippa V, Cristofani R, Cicardi ME, Ferrari V, Vezzoli G, Tedesco B, Meroni M, Messi E, et al: Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy. 15:631–651. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Sun Y, Cen X, Shan B, Zhao Q, Xie T, Wang Z, Hou T, Xue Y, Zhang M, et al: Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein Cell. 12:769–787. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cuervo AM, Dice JF and Knecht E: A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem. 272:5606–5615. 1997. View Article : Google Scholar : PubMed/NCBI | |
Dong S, Aguirre-Hernandez C, Scrivo A, Eliscovich C, Arias E, Bravo-Cordero JJ and Cuervo AM: Monitoring spatiotemporal changes in chaperone-mediated autophagy in vivo. Nat Commun. 11:6452020. View Article : Google Scholar : PubMed/NCBI |