Peroxisome proliferator‑activated receptor γ coactivator‑1α in heart disease (Review)
- Authors:
- Siyu Sun
- Huige Guo
- Guohui Chen
- Hui Zhang
- Zhanrui Zhang
- Xiulong Wang
- Dongxu Li
- Xuefang Li
- Guoan Zhao
- Fei Lin
-
Affiliations: Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China, Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453000, P.R. China - Published online on: November 4, 2024 https://doi.org/10.3892/mmr.2024.13382
- Article Number: 17
-
Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Harrington JS, Ryter SW, Plataki M, Price DR and Choi AMK: Mitochondria in health, disease and aging. Physiol Rev. 103:2349–2422. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jannig PR, Dumesic PA, Spiegelman BM and Ruas JL: SnapShot: Regulation and biology of PGC-1α. Cell. 185:1444.e12022. View Article : Google Scholar : PubMed/NCBI | |
Andrulionyte L, Peltola P, Chiasson JL and Laakso M; STOP-NIDDM Study Group, : Single nucleotide polymorphisms of PPARD in combination with the Gly482Ser substitution of PGC-1A and the Pro12Ala substitution of PPARG2 predict the conversion from impaired glucose tolerance to type 2 diabetes: The STOP-NIDDM trial. Diabetes. 55:2148–2152. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yongsakulchai P, Settasatian C, Settasatian N, Komanasin N, Kukongwiriyapan U, Cote ML, Intharapetch P and Senthong V: Association of combined genetic variations in PPARγ, PGC-1α and LXRα with coronary artery disease and severity in Thai population. Atherosclerosis. 248:140–148. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rojek A, Cielecka-Prynda M, Przewlocka-Kosmala M, Laczmanski L, Mysiak A and Kosmala W: Impact of the PPARGC1A Gly482Ser polymorphism on left ventricular structural and functional abnormalities in patients with hypertension. J Hum Hypertens. 28:557–563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Chen T, Wu H, Yang N and Xu S: Melatonin attenuates bisphenol A-induced colon injury by dual targeting mitochondrial dynamics and Nrf2 antioxidant system via activation of SIRT1/PGC-1α signaling pathway. Free Radic Biol Med. 195:13–22. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kärkkäinen O, Tuomainen T, Mutikainen M, Lehtonen M, Ruas JL, Hanhineva K and Tavi P: Heart specific PGC-1α deletion identifies metabolome of cardiac restricted metabolic heart failure. Cardiovasc Res. 115:107–118. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rowe GC, Jiang A and Arany Z: PGC-1 coactivators in cardiac development and disease. Circ Res. 107:825–838. 2010. View Article : Google Scholar : PubMed/NCBI | |
Garcia D and Shaw RJ: AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 66:789–800. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tian R, Musi N, D'Agostino J, Hirshman MF and Goodyear LJ: Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation. 104:1664–1669. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nishino Y, Miura T, Miki T, Sakamoto J, Nakamura Y, Ikeda Y, Kobayashi H and Shimamoto K: Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovasc Res. 61:610–619. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tong D, Schiattarella GG, Jiang N, Daou D, Luo Y, Link MS, Lavandero S, Gillette TG and Hill JA: Impaired AMP-Activated protein kinase signaling in heart failure with preserved ejection Fraction-associated atrial fibrillation. Circulation. 146:73–76. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Xu L, Guo X, Tao H, Liu Y, Liu X, Zhang Y and Meng X: The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J Pharm Anal. 14:157–176. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jäger S, Handschin C, St-Pierre J and Spiegelman BM: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 104:12017–12022. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li X, Guo Y, Chan L and Guan X: Alpha-Lipoic acid increases energy expenditure by enhancing adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling in the skeletal muscle of aged mice. Metabolism. 59:967–976. 2010. View Article : Google Scholar : PubMed/NCBI | |
Malik N, Ferreira BI, Hollstein PE, Curtis SD, Trefts E, Weiser Novak S, Yu J, Gilson R, Hellberg K, Fang L, et al: Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science. 380:eabj55592023. View Article : Google Scholar : PubMed/NCBI | |
Xu CQ, Li J, Liang ZQ, Zhong YL, Zhang ZH, Hu XQ, Cao YB and Chen J: Sirtuins in macrophage immune metabolism: A novel target for cardiovascular disorders. Int J Biol Macromol. 256:1282702024. View Article : Google Scholar : PubMed/NCBI | |
Komen JC and Thorburn DR: Turn up the power-pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol. 171:1818–1836. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Quan N, Sun W, Chen X, Cates C, Rousselle T, Zhou X, Zhao X and Li J: Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury. Cardiovasc Res. 114:805–821. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Q and Lesnefsky EJ: A new strategy to decrease cardiac injury in aged heart following Ischaemia-reperfusion: Enhancement of the interaction between AMPK and SIRT1. Cardiovasc Res. 114:771–772. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bugga P, Alam MJ, Kumar R, Pal S, Chattopadyay N and Banerjee SK: Sirt3 ameliorates mitochondrial dysfunction and oxidative stress through regulating mitochondrial bioge-nesis and dynamics in cardiomyoblast. Cell Signal. 94:1103092022. View Article : Google Scholar : PubMed/NCBI | |
Capece D, Verzella D, Flati I, Arboretto P, Cornice J and Franzoso G: NF-κB: Blending metabolism, immunity and inflammation. Trends Immunol. 43:757–775. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bertero E, Dudek J, Cochain C, Delgobo M, Ramos G, Gerull B, Higuchi T, Vaeth M, Zernecke A, Frantz S, et al: Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc Res. 118:37–52. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rabinovich-Nikitin I, Blant A, Dhingra R, Kirshenbaum LA and Czubryt MP: NF-κB p65 attenuates cardiomyocyte PGC-1α expression in hypoxia. Cells. 11:21932022. View Article : Google Scholar : PubMed/NCBI | |
Zhao MM, Xu MJ, Cai Y, Zhao G, Guan Y, Kong W, Tang C and Wang X: Mitochondrial reactive oxygen species promote p65 nuclear translocation mediating high-phosphate-induced vascular calcification in vitro and in vivo. Kidney Int. 79:1071–1079. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Xu S, Xu J, Xin Y, Lu Y, Zhang H, Zhou B, Xu H, Sheu SS, Tian R and Wang W: Elevated MCU expression by CaMKIIδB limits pathological cardiac remodeling. Circulation. 145:1067–1083. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wright DC, Geiger PC, Han DH, Jones TE and Holloszy JO: Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem. 282:18793–18799. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim HK, Ko TH, Song IS, Jeong YJ, Heo HJ, Jeong SH, Kim M, Park NM, Seo DY, Kha PT, et al: BH4 activates CaMKK2 and rescues the cardiomyopathic phenotype in rodent models of diabetes. Life Sci Alliance. 3:e2019006192020. View Article : Google Scholar : PubMed/NCBI | |
Watanabe S, Horie T, Nagao K, Kuwabara Y, Baba O, Nishi H, Sowa N, Narazaki M, Matsuda T, Takemura G, et al: Cardiac-specific inhibition of kinase activity in calcium/calmodulin-dependent protein kinase kinase-β leads to accelerated left ventricular remodeling and heart failure after transverse aortic constriction in mice. PLoS One. 9:e1082012014. View Article : Google Scholar : PubMed/NCBI | |
Gill JF, Delezie J, Santos G, McGuirk S, Schnyder S, Frank S, Rausch M, St-Pierre J and Handschin C: Peroxisome proliferator-activated receptor γ coactivator 1α regulates mitochondrial calcium homeostasis, sarcoplasmic reticulum stress and cell death to mitigate skeletal muscle aging. Aging Cell. 18:e129932019. View Article : Google Scholar : PubMed/NCBI | |
Oldfield CJ, Duhamel TA and Dhalla NS: Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol. 98:74–84. 2020. View Article : Google Scholar : PubMed/NCBI | |
Brainard RE and Facundo HT: Cardiac hypertrophy drives PGC-1α suppression associated with enhanced O-glycosylation. Biochim Biophys Acta Mol Basis Dis. 1867:1660802021. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Li M, Lyu D, Xiao H, Li S, Li Z, Li M, Xiao J and Huang H: Cinnamaldehyde activates AMPK/PGC-1α pathway via targeting GRK2 to ameliorate heart failure. Phytomedicine. 133:1558942024. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Xu X, Huang Y, Fassett J, Flagg TP, Zhang Y, Nichols CG, Bache RJ and Chen Y: Disruption of sarcolemmal ATP-sensitive potassium channel activity impairs the cardiac response to systolic overload. Circ Res. 103:1009–1017. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhuang L, Jia K, Chen C, Li Z, Zhao J, Hu J, Zhang H, Fan Q, Huang C, Xie H, et al: DYRK1B-STAT3 drives cardiac hypertrophy and heart failure by impairing mitochondrial bioenergetics. Circulation. 145:829–846. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Tang F, Yang Y, Lu M, Luan A, Zhang J, Yang J and Wang H: Astragaloside IV protects against isoproterenol-induced cardiac hypertrophy by regulating NF-κB/PGC-1α signaling mediated energy biosynthesis. PLoS One. 10:e01187592015. View Article : Google Scholar : PubMed/NCBI | |
Planavila A, Iglesias R, Giralt M and Villarroya F: Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation and inflammation. Cardiovasc Res. 90:276–284. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu XP, Gao H, Huang XY, Chen YF, Feng XJ, He YH, Li ZM and Liu PQ: Peroxisome proliferator-activated receptor gamma coactivator 1 alpha protects cardiomyocytes from hypertrophy by suppressing calcineurin-nuclear factor of activated T cells c4 signaling pathway. Transl Res. 166:459–473.e3. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pereira RO, Wende AR, Crum A, Hunter D, Olsen CD, Rawlings T, Riehle C, Ward WF and Abel ED: Maintaining PGC-1α expression following pressure overload-induced cardiac hypertrophy preserves angiogenesis but not contractile or mitochondrial function. FASEB J. 28:3691–3702. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bhat S, Chin A, Shirakabe A, Ikeda Y, Ikeda S, Zhai P, Hsu CP, Sayed D, Abdellatif M, Byun J, et al: Recruitment of RNA polymerase II to metabolic gene promoters is inhibited in the failing heart possibly through PGC-1α (Peroxisome proliferator-activated Receptor-γ coactivator-1α) Dysregulation. Circ Heart Fail. 12:e0055292019. View Article : Google Scholar : PubMed/NCBI | |
Naumenko N, Mutikainen M, Holappa L, Ruas JL, Tuomainen T and Tavi P: PGC-1α deficiency reveals sex-specific links between cardiac energy metabolism and EC-coupling during development of heart failure in mice. Cardiovasc Res. 118:1520–1534. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Qin Y, Liu B, Gao M, Li A, Li X and Gong G: PGC-1α-mediated mitochondrial quality control: Molecular mechanisms and implications for heart failure. Front Cell Dev Biol. 10:8713572022. View Article : Google Scholar : PubMed/NCBI | |
Hausenloy DJ and Yellon DM: Ischaemic conditioning and reperfusion injury. Nature reviews. Cardiology. 13:193–209. 2016.PubMed/NCBI | |
Kadlec AO, Chabowski DS, Ait-Aissa K and Gutterman DD: Role of PGC-1α in Vascular Regulation: Implications for Atherosclerosis. Arterioscler Thromb Vasc Biol. 36:1467–1474. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang ZC, Niu KM, Wu YJ, Du KR, Qi LW, Zhou YB and Sun HJ: A dual Keap1 and p47phox inhibitor Ginsenoside Rb1 ameliorates high glucose/ox-LDL-induced endothelial cell injury and atherosclerosis. Cell Death Dis. 13:8242022. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ, Park KG, Yoo EK, Kim YH, Kim YN, Kim HS, Kim HT, Park JY, Lee KU, Jang WG, et al: Effects of PGC-1alpha on TNF-alpha-induced MCP-1 and VCAM-1 expression and NF-kappaB activation in human aortic smooth muscle and endothelial cells. Antioxid Redox Signal. 9:301–307. 2007. View Article : Google Scholar : PubMed/NCBI | |
McCarthy C, Lieggi NT, Barry D, Mooney D, de Gaetano M, James WG, McClelland S, Barry MC, Escoubet-Lozach L, Li AC, et al: Macrophage PPAR gamma Co-activator-1 alpha participates in repressing foam cell formation and atherosclerosis in response to conjugated linoleic acid. EMBO Mol Med. 5:1443–1457. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li YQ, Jiao Y, Liu YN, Fu JY, Sun LK and Su J: PGC-1α protects from myocardial ischaemia-reperfusion injury by regulating mitonuclear communication. J Cell Mol Med. 26:593–600. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wang Y, Chen J, Chen X, Cao W, Chen S, Xu S, Huang H and Liu P: Roles of transcriptional corepressor RIP140 and coactivator PGC-1α in energy state of chronically infarcted rat hearts and mitochondrial function of cardiomyocytes. Mol Cell Endocrinol. 362:11–18. 2012. View Article : Google Scholar : PubMed/NCBI | |
Caligiuri G: Mechanotransduction, immunoregulation and metabolic functions of CD31 in cardiovascular pathophysiology. Cardiovasc Res. 115:1425–1434. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kadlec AO, Chabowski DS, Ait-Aissa K, Hockenberry JC, Otterson MF, Durand MJ, Freed JK, Beyer AM and Gutterman DD: PGC-1α (Peroxisome proliferator-activated receptor γ coactivator 1-α) overexpression in coronary artery disease recruits NO and hydrogen peroxide during flow-mediated dilation and protects against increased intraluminal pressure. Hypertension. 70:166–173. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, et al: Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacol Rev. 73:924–967. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Geng XY and Cong XL: PGC-1α ameliorates Angiotensin II-induced eNOS dysfunction in human aortic endothelial cells. Vascul Pharmacol. 83:90–97. 2016. View Article : Google Scholar : PubMed/NCBI | |
García-Quintans N, Prieto I, Sánchez-Ramos C, Luque A, Arza E, Olmos Y and Monsalve M: Regulation of endothelial dynamics by PGC-1α relies on ROS control of VEGF-A signaling. Free Radical Biol Med. 93:41–51. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moore KJ, Koplev S, Fisher EA, Tabas I, Björkegren JLM, Doran AC and Kovacic JC: Macrophage trafficking, inflammatory resolution and genomics in atherosclerosis: JACC Macrophage in CVD Series (Part 2). J Am Coll Cardiol. 72:2181–2197. 2018. View Article : Google Scholar : PubMed/NCBI | |
Minsky N and Roeder RG: Inhibition of adhesion molecule gene expression and cell adhesion by the metabolic regulator PGC-1α. PLoS One. 11:e01655982016. View Article : Google Scholar : PubMed/NCBI | |
Qu A, Jiang C, Xu M, Zhang Y, Zhu Y, Xu Q, Zhang C and Wang X: PGC-1alpha attenuates neointimal formation via inhibition of vascular smooth muscle cell migration in the injured rat carotid artery. Am J Physiol Cell Physiol. 297:C645–C653. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Sun G, Zhang H, Zhang Y, Chen X, Jiang X, Jiang X, Krauss S, Zhang J, Xiang Y and Zhang CY: PGC-1alpha is a key regulator of glucose-induced proliferation and migration in vascular smooth muscle cells. PLoS One. 4:e41822009. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Zhang J and Wang H: PGC-1α limits angiotensin II-induced rat vascular smooth muscle cells proliferation via attenuating NOX1-mediated generation of reactive oxygen species. Biosci Rep. 35:e002522015. View Article : Google Scholar : PubMed/NCBI | |
Nah DY and Rhee MY: The inflammatory response and cardiac repair after myocardial infarction. Korean Circ J. 39:393–398. 2009. View Article : Google Scholar : PubMed/NCBI | |
Günthel M, van Duijvenboden K, de Bakker DEM, Hooijkaas IB, Bakkers J, Barnett P and Christoffels VM: Epigenetic state changes underlie metabolic switch in mouse post-infarction border zone cardiomyocytes. J Cardiovasc Dev Dis. 8:1342021.PubMed/NCBI | |
Oehler D, Spychala A, Gödecke A, Lang A, Gerdes N, Ruas J, Kelm M, Szendroedi J and Westenfeld R: Full-length transcriptomic analysis in murine and human heart reveals diversity of PGC-1α promoters and isoforms regulated distinctly in myocardial ischemia and obesity. BMC Biol. 20:1692022. View Article : Google Scholar : PubMed/NCBI | |
Lou PH, Zhang L, Lucchinetti E, Heck M, Affolter A, Gandhi M, Kienesberger PC, Hersberger M, Clanachan AS and Zaugg M: Infarct-remodelled hearts with limited oxidative capacity boost fatty acid oxidation after conditioning against ischaemia/reperfusion injury. Cardiovasc Res. 97:251–261. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bugger H and Pfeil K: Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis. 1866:1657682020. View Article : Google Scholar : PubMed/NCBI | |
Gu S, Hua H, Guo X, Jia Z, Zhang Y, Maslov LN, Zhang X and Ma H: PGC-1α participates in the protective effect of chronic intermittent hypobaric hypoxia on cardiomyocytes. Cell Physiol Biochem. 50:1891–1902. 2018. View Article : Google Scholar : PubMed/NCBI | |
Papatheodorou I, Makrecka-Kuka M, Kuka J, Liepinsh E, Dambrova M and Lazou A: Pharmacological activation of PPARβ/δ preserves mitochondrial respiratory function in ischemia/reperfusion via stimulation of fatty acid oxidation-linked respiration and PGC-1α/NRF-1 signaling. Front Endocrinol. 13:9418222022. View Article : Google Scholar : PubMed/NCBI | |
Yu LM, Dong X, Xue XD, Zhang J, Li Z, Wu HJ, Yang ZL, Yang Y and Wang HS: Naringenin improves mitochondrial function and reduces cardiac damage following ischemia-reperfusion injury: The role of the AMPK-SIRT3 signaling pathway. Food Function. 10:2752–2765. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lindberg S, Jensen JS, Pedersen SH, Galatius S, Frystyk J, Flyvbjerg A, Bjerre M and Mogelvang R: Low adiponectin levels and increased risk of type 2 diabetes in patients with myocardial infarction. Diabetes Care. 37:3003–3008. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, Zhang F, Zhao S, Li Y, Chen X, Gao E, Xu X, Xiong Z, Zhang X, Zhang J, et al: Adiponectin determines farnesoid X receptor agonism-mediated cardioprotection against post-infarction remodelling and dysfunction. Cardiovasc Res. 114:1335–1349. 2018. View Article : Google Scholar : PubMed/NCBI | |
Monsalve M: Induction of PGC-1α expression can be detected in blood samples of patients with ST-segment elevation acute myocardial infarction. PLoS One. 6:e269132011. View Article : Google Scholar : PubMed/NCBI | |
Duncan JG, Fong JL, Medeiros DM, Finck BN and Kelly DP: Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation. 115:909–917. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim Y, Lim JH, Kim EN, Hong YA, Park HJ, Chung S, Choi BS, Kim YS, Park JY, Kim HW and Park CW: Adiponectin receptor agonist ameliorates cardiac lipotoxicity via enhancing ceramide metabolism in type 2 diabetic mice. Cell Death Disease. 13:2822022. View Article : Google Scholar : PubMed/NCBI | |
Bekhite M, González-Delgado A, Hübner S, Haxhikadrija P, Kretzschmar T, Müller T, Wu JMF, Bekfani T, Franz M, Wartenberg M, et al: The role of ceramide accumulation in human induced pluripotent stem cell-derived cardiomyocytes on mitochondrial oxidative stress and mitophagy. Free Radical Biol Med. 167:66–80. 2021. View Article : Google Scholar : PubMed/NCBI | |
Waldman M, Arad M, Abraham NG and Hochhauser E: The peroxisome Proliferator-activated receptor-gamma coactivator-1α-heme oxygenase 1 axis a powerful antioxidative pathway with potential to attenuate diabetic cardiomyopathy. Antioxid Redox Signal. 32:1273–1290. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang SY, Zhu S, Wu J, Zhang M, Xu Y, Xu W, Cui J, Yu B, Cao W and Liu J: Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy. J Mol Med (Berl). 98:245–261. 2020. View Article : Google Scholar : PubMed/NCBI | |
Waldman M, Cohen K, Yadin D, Nudelman V, Gorfil D, Laniado-Schwartzman M, Kornwoski R, Aravot D, Abraham NG, Arad M and Hochhauser E: Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1α’. Cardiovasc Diabetol. 17:1112018. View Article : Google Scholar : PubMed/NCBI | |
Whitehead N, Gill JF, Brink M and Handschin C: Moderate modulation of cardiac PGC-1α expression partially affects age-associated transcriptional remodeling of the heart. Front Physiol. 9:2422018. View Article : Google Scholar : PubMed/NCBI | |
Mamoshina P, Rodriguez B and Bueno-Orovio A: Toward a broader view of mechanisms of drug cardiotoxicity. Cell Rep Med. 2:1002162021. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Tian Z, Sun M and Dong D: Nrf2: A dark horse in doxorubicin-induced cardiotoxicity. Cell Death Discov. 9:2612023. View Article : Google Scholar : PubMed/NCBI | |
Song JH, Kim MS, Lee SH, Hwang JT, Park SH, Park SW, Jeon SB, Lee RR, Lee J and Choi HK: Hydroethanolic extract of Cirsium setidens ameliorates doxorubicin-induced cardiotoxicity by AMPK-PGC-1α-SOD-mediated mitochondrial protection. Phytomedicine. 129:1556332024. View Article : Google Scholar : PubMed/NCBI | |
Yin L, Yuan L, Tang Y, Luo Z, Lin X, Wang S, Liang P and Jiang B: Nucleolin promotes autophagy through PGC-1α In LPS-induced myocardial injury. Shock. 60:227–237. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pharoah BM, Zhang C, Khodade VS, Keceli G, McGinity C, Paolocci N and Toscano JP: Hydropersulfides (RSSH) attenuate doxorubicin-induced cardiotoxicity while boosting its anticancer action. Redox Biol. 60:1026252023. View Article : Google Scholar : PubMed/NCBI | |
Terrar DA: Timing mechanisms to control heart rhythm and initiate arrhythmias: Roles for intracellular organelles, signalling pathways and subsarcolemmal Ca2. Philos Trans R Soc Lond B Biol Sci. 378:202201702023. View Article : Google Scholar : PubMed/NCBI | |
Chadda KR, Edling CE, Valli H, Ahmad S, Huang CL and Jeevaratnam K: Gene and protein expression profile of selected molecular targets mediating electrophysiological function in Pgc-1α deficient murine atria. Int J Mol Sci. 19:34502018. View Article : Google Scholar : PubMed/NCBI | |
Saadeh K, Chadda KR, Ahmad S, Valli H, Nanthakumar N, Fazmin IT, Edling CE, Huang CL and Jeevaratnam K: Molecular basis of ventricular arrhythmogenicity in a Pgc-1α deficient murine model. Mol Genet Metab Rep. 27:1007532021. View Article : Google Scholar : PubMed/NCBI | |
Liu GZ, Hou TT, Yuan Y, Hang PZ, Zhao JJ, Sun L, Zhao GQ, Zhao J, Dong JM, Wang XB, et al: Fenofibrate inhibits atrial metabolic remodelling in atrial fibrillation through PPAR-α/sirtuin 1/PGC-1α pathway. Br J Pharmacol. 173:1095–1109. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM and Kelly DP: Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 106:847–856. 2000. View Article : Google Scholar : PubMed/NCBI |