1
|
Rawat PS, Jaiswal A, Khurana A, Bhatti JS
and Navik U: Doxorubicin-induced cardiotoxicity: An update on the
molecular mechanism and novel therapeutic strategies for effective
management. Biomed Pharmacother. 139:1117082021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Liu C, Ma X, Zhuang J, Liu L and Sun C:
Cardiotoxicity of doxorubicin-based cancer treatment: What is the
protective cognition that phytochemicals provide us? Pharmacol Res.
160:1050622020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jones IC and Dass CR: Doxorubicin-induced
cardiotoxicity: Causative factors and possible interventions. Pharm
Pharmacol. 74:1677–1688. 2022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Carvalho C, Santos RX, Cardoso S, Correia
S, Oliveira PJ, Santos MS and Moreira PI: Doxorubicin: The good,
the bad and the ugly effect. Curr Med Chem. 16:3267–3285. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Christiansen S and Autschbach R:
Doxorubicin in experimental and clinical heart failure. Eur J
Cardiothorac Surg. 30:611–616. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hardaway BW: Adriamycin-associated
cardiomyopathy: where are we now? updates in pathophysiology, dose
recommendations, prognosis, and outcomes. Curr Opin Cardiol.
34:289–295. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Stockwell BR: Ferroptosis turns 10:
Emerging mechanisms, physiological functions, and therapeutic
applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Fujii J, Homma T and Kobayashi S:
Ferroptosis caused by cysteine insufficiency and oxidative insult.
Free Radic Res. 54:969–980. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kotamraju S, Chitambar CR, Kalivendi SV,
Joseph J and Kalyanaraman B: Transferrin receptor-dependent iron
uptake is responsible for doxorubicin-mediated apoptosis in
endothelial cells: Role of oxidant-induced iron signaling in
apoptosis. J Biol Chem. 277:17179–17187. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Fang X, Ardehali H, Min J and Wang F: The
molecular and metabolic landscape of iron and ferroptosis in
cardiovascular disease. Nat Rev Cardiol. 20:7–23. 2023. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: an iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lu J, Zhao Y, Liu M, Lu J and Guan S:
Toward improved human health: Nrf2 plays a critical role in
regulating ferroptosis. Food Funct. 12:9583–9606. 2021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Luo LF, Guan P, Qin LY, Wang JX, Wang N
and Ji ES: Astragaloside IV inhibits adriamycin-induced cardiac
ferroptosis by enhancing Nrf2 signaling. Mol Cell Biochem.
476:2603–2611. 2021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yu W, Chen C, Xu C, Xie D, Wang Q, Liu W,
Zhao H, He F, Chen B, Xi Y, et al: Activation of p62-NRF2 axis
protects against doxorubicin-induced ferroptosis in cardiomyocytes:
A novel role and molecular mechanism of resveratrol. Am J Chin Med.
50:2103–2123. 2022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li D, Liu X, Pi W, Zhang Y, Yu L, Xu C,
Sun Z and Jiang J: Fisetin attenuates doxorubicin-induced
cardiomyopathy in vivo and in vitro by inhibiting ferroptosis
through SIRT1/Nrf2 signaling pathway activation. Front Pharmacol.
12:8084802022. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fang J, Wang X, Lu M, He X and Yang X:
Recent advances in polysaccharides from Ophiopogon japonicus and
Liriope spicata var. prolifera. Int J Biol Macromol. 114:1257–1266.
2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen MH, Chen XJ, Wang M, Lin LG and Wang
YT: Ophiopogon japonicus-A phytochemical, ethnomedicinal and
pharmacological review. J Ethnopharmacol. 181:193–213. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang J, Fan S, Mao Y, Ji Y, Jin L, Lu J
and Chen X: Cardiovascular protective effect of polysaccharide from
Ophiopogon japonicus in diabetic rats. Int J Biol Macromol.
82:505–513. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ayala A, Muñoz MF and Argüelles S: Lipid
peroxidation: production, metabolism, and signaling mechanisms of
malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev.
2014:3604382014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cao Y, Shen T, Huang X, Lin Y, Chen B,
Pang J, Li G, Wang Q, Zohrabian S, Duan C, et al: Astragalus
polysaccharide restores autophagic flux and improves cardiomyocyte
function in doxorubicin-induced cardiotoxicity. Oncotarget.
8:4837–4848. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xie Y, Kang R, Klionsky DJ and Tang D:
GPX4 in cell death, autophagy, and disease. Autophagy.
19:2621–2638. 2023. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tsikas D: Assessment of lipid peroxidation
by measuring malondialdehyde (MDA) and relatives in biological
samples: Analytical and biological challenges. Anal Biochem.
524:13–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Otasevic V, Vucetic M, Grigorov I,
Martinovic V and Stancic A: Ferroptosis in different pathological
contexts seen through the eyes of mitochondria. Oxid Med Cell
Longev. 2021:55373302021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Dodson M, Castro-Portuguez R and Zhang DD:
NRF2 plays a critical role in mitigating lipid peroxidation and
ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI
|
25
|
He F, Ru X and Wen T: NRF2, a
transcription factor for stress response and beyond. Int J Mol Sci.
21:47772020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jiang X, Yu M, Wang WK, Zhu LY, Wang X,
Jin HC and Feng LF: The regulation and function of Nrf2 signaling
in ferroptosis-activated cancer therapy. Acta Pharmacol Sin.
45:2229–2240. 2024. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fang X, Wang H, Han D, Xie E, Yang X, Wei
J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for
protection against cardiomyopathy. Proc Natl Acad Sci USA.
116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Prathumsap N, Shinlapawittayatorn K,
Chattipakorn SC and Chattipakorn N: Effects of doxorubicin on the
heart: From molecular mechanisms to intervention strategies. Eur J
Pharmacol. 866:1728182020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cvetković RS and Scott LJ: Dexrazoxane: A
review of its use for cardioprotection during anthracycline
chemotherapy. Drugs. 65:1005–1024. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhou D, Zhang H, Xue X, Tao Y, Wang S, Ren
X and Su J: Safety evaluation of natural drugs in chronic skeletal
disorders: A literature review of clinical trials in the past 20
years. Front Pharmacol. 12:8012872022. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang S, Lin X, Wang LY, Ruan KF, Feng Y
and Li XY: A polysaccharides MDG-1 augments survival in the
ischemic heart by inducing S1P release and S1P1 expression. Int J
Biol Macromol. 50:734–740. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zheng Q, Feng Y, Xu DS, Lin X and Chen YZ:
Influence of sulfation on anti-myocardial ischemic activity of
Ophiopogon japonicus polysaccharide. J Asian Nat Prod Res.
11:306–321. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang L and Wang Y, Wu F, Wang X, Feng Y
and Wang Y: MDG, an Ophiopogon japonicus polysaccharide, inhibits
non-alcoholic fatty liver disease by regulating the abundance of
Akkermansia muciniphila. Int J Biol Macromol. 196:23–34. 2022.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Lin C, Kuo TC, Lin JC, Ho YC and Mi FL:
Delivery of polysaccharides from Ophiopogon japonicus (OJPs) using
OJPs/chitosan/whey protein co-assembled nanoparticles to treat
defective intestinal epithelial tight junction barrier. Int J Biol
Macromol. 160:558–570. 2020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yang ZG, Liang X and Zhao YQ: Effect of
shashen maidong tang combined with chemotherapy on immune function
and inflammatory reaction of patients with lung cancer of Qi and
Yin deficiency. Chin J Exp Tradit Med. 23:158–163. 2017.(In
Chinese).
|
36
|
Yue L, Xiao L, Zhang X, Niu L, Wen Y, Li
X, Wang Y, Xing G and Li G: Comparative efficacy of Chinese herbal
injections in patients with cardiogenic shock (CS): A systematic
review and Bayesian network meta-analysis of randomized controlled
trials. Front Pharmacol. 15:13483602024. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tadokoro T, Ikeda M, Ide T, Deguchi H,
Ikeda S, Okabe K, Ishikita A, Matsushima S, Koumura T, Yamada KI,
et al: Mitochondria-dependent ferroptosis plays a pivotal role in
doxorubicin cardiotoxicity. JCI Insight. 8:e1697562023. View Article : Google Scholar : PubMed/NCBI
|
38
|
Su LJ, Zhang JH, Gomez H, Murugan R, Hong
X, Xu D, Jiang F and Peng ZY: Reactive oxygen species-induced lipid
peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med
Cell Longev. 2019:50808432019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Fan S, Zhang J, Xiao Q, Liu P, Zhang Y,
Yao E and Cahen X: Cardioprotective effect of the polysaccharide
from Ophiopogon japonicus on isoproterenol-induced myocardial
ischemia in rats. Int J Biol Macromol. 147:233–240. 2020.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Dai E, Chen X, Linkermann A, Jiang X, Kang
R, Kagan VE, Bayir H, Yang WS, Garcia-Saez AJ, Ioannou MS, et al: A
guideline on the molecular ecosystem regulating ferroptosis. Nat
Cell Biol. 26:1447–1457. 2024. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gao M, Yi J, Zhu J, Minikes AM, Monian P,
Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol
Cell. 73:354–363. e3. 2019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang M, Tang J, Zhang S, Pang K, Zhao Y,
Liu N, Huang J, Kang J, Dong S, Li H, et al: Exogenous H2S
initiating Nrf2/GPx4/GSH pathway through promoting Syvn1-Keap1
interaction in diabetic hearts. Cell Death Discov. 9:3942023.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Kerins MJ and Ooi A: The Roles of NRF2 in
modulating cellular iron homeostasis. Antioxid Redox Signal.
29:1756–1773. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Song X and Long D: Nrf2 and Ferroptosis: A
new research direction for neurodegenerative diseases. Front
Neurosci. 14:2672020. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wang Z, Yao M, Jiang L, Wang L, Yang Y,
Wang Q, Qian X, Zhao Y and Qian J: Dexmedetomidine attenuates
myocardial ischemia/reperfusion-induced ferroptosis via
AMPK/GSK-3β/Nrf2 axis. Biomed Pharmacother. 154:1135722022.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Xu S, Wu B, Zhong B, Lin L, Ding Y, Jin X,
Huang Z, Lin M, Wu H and Xu D: Naringenin alleviates myocardial
ischemia/reperfusion injury by regulating the nuclear
factor-erythroid factor 2-related factor 2 (Nrf2)/System
xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis.
Bioengineered. 12:10924–10934. 2021. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhang J, Wu C, Gao L, Du G and Qin X:
Astragaloside IV derived from Astragalus membranaceus: A research
review on the pharmacological effects. Adv Pharmacol. 87:89–112.
2020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wang B, Jin Y, Liu J, Liu Q, Shen Y, Zuo S
and Yu Y: EP1 activation inhibits doxorubicin-cardiomyocyte
ferroptosis via Nrf2. Redox Biol. 65:1028252023. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang Y, Yan S, Liu X, Deng F, Wang P, Yang
L, Hu L, Huang K and He J: PRMT4 promotes ferroptosis to aggravate
doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4
pathway. Cell Death Differ. 29:1982–1995. 2022. View Article : Google Scholar : PubMed/NCBI
|
50
|
Liu Q, Lu JJ, Hong HJ, Yang Q, Wang Y and
Chen XJ: Ophiopogon japonicus and its active compounds: A review of
potential anticancer effects and underlying mechanisms.
Phytomedicine. 113:1547182023. View Article : Google Scholar : PubMed/NCBI
|
51
|
Chen QM and Maltagliati AJ: Nrf2 at the
heart of oxidative stress and cardiac protection. Physiol Genomics.
50:77–97. 2018. View Article : Google Scholar : PubMed/NCBI
|