Insights into renal damage in hyperuricemia: Focus on renal protection (Review)
- Authors:
- Hang Yang
- Jie Ying
- Tong Zu
- Xiao-Ming Meng
- Juan Jin
-
Affiliations: School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti‑Inflammatory of Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China - Published online on: December 24, 2024 https://doi.org/10.3892/mmr.2024.13424
- Article Number: 59
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Furuhashi M: New insights into purine metabolism in metabolic diseases: Role of xanthine oxidoreductase activity. Am J Physiol Endocrinol Metab. 319:E827–E834. 2020. View Article : Google Scholar : PubMed/NCBI | |
El Ridi R and Tallima H: Physiological functions and pathogenic potential of uric acid: A review. J Adv Res. 8:487–493. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lima WG, Martins-Santos MES and Chaves VE: Uric acid as a modulator of glucose and lipid metabolism. Biochimie. 116:17–23. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yanai H, Adachi H, Hakoshima M and Katsuyama H: Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int J Mol Sci. 22:92212021. View Article : Google Scholar : PubMed/NCBI | |
Spatola L, Ferraro PM, Gambaro G, Badalamenti S and Dauriz M: Metabolic syndrome and uric acid nephrolithiasis: Insulin resistance in focus. Metabolism. 83:225–233. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nakanishi K and Morita H: Uric acid. Int Heart J. 63:423–425. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ejaz AA, Nakagawa T, Kanbay M, Kuwabara M, Kumar A, Garcia Arroyo FE, Roncal-Jimenez C, Sasai F, Kang DH, Jensen T, et al: Hyperuricemia in kidney disease: A Major risk factor for cardiovascular events, vascular calcification, and renal damage. Semin Nephrol. 40:574–585. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Lozada LG: The pathophysiology of uric acid on renal diseases. Contrib Nephrol. 192:17–24. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maruhashi T, Hisatome I, Kihara Y and Higashi Y: Hyperuricemia and endothelial function: From molecular background to clinical perspectives. Atherosclerosis. 278:226–231. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kushiyama A, Okubo H, Sakoda H, Kikuchi T, Fujishiro M, Sato H, Kushiyama S, Iwashita M, Nishimura F, Fukushima T, et al: Xanthine oxidoreductase is involved in macrophage foam cell formation and atherosclerosis development. Arterioscler Thromb Vasc Biol. 32:291–298. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ives A, Nomura J, Martinon F, Roger T, LeRoy D, Miner JN, Simon G, Busso N and So A: Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation. Nat Commun. 6:65552015. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Zhu Y, Ma Y, Zhang H, Zhao H, Zhang Y, Yang Z and Liu Y: Relationship between hyperuricemia and the risk of cardiovascular events and chronic kidney disease in both the general population and hypertensive patients: A systematic review and meta-analysis. Int J Cardiol. 399:1317792024. View Article : Google Scholar : PubMed/NCBI | |
Chaudhary K, Malhotra K, Sowers J and Aroor A: Uric acid-key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 3:208–220. 2013. View Article : Google Scholar : PubMed/NCBI | |
Benn CL, Dua P, Gurrell R, Loudon P, Pike A, Storer RI and Vangjeli C: Physiology of hyperuricemia and urate-lowering treatments. Front Med (Lausanne). 5:1602018. View Article : Google Scholar : PubMed/NCBI | |
Maiuolo J, Oppedisano F, Gratteri S, Muscoli C and Mollace V: Regulation of uric acid metabolism and excretion. Int J Cardiol. 213:8–14. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gherghina ME, Peride I, Tiglis M, Neagu TP, Niculae A and Checherita IA: Uric acid and oxidative stress-relationship with cardiovascular, metabolic, and renal impairment. Int J Mol Sci. 23:31882022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Chen M, Zheng J, Shui X, He Y, Luo H and Lei W: Insights into the relationship between serum uric acid and pulmonary hypertension (Review). Mol Med Rep. 29:102024. View Article : Google Scholar : PubMed/NCBI | |
Fang C, Chen L, He M, Luo Y, Zhou M, Zhang N, Yuan J, Wang H and Xie Y: Molecular mechanistic insight into the anti-hyperuricemic effect of Eucommia ulmoides in mice and rats. Pharm Biol. 57:112–119. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun HL, Bian HG, Liu XM, Zhang H, Ying J, Yang H, Zu T, Cui GQ, Liao YF, Xu MF, et al: GRP/GRPR signaling pathway aggravates hyperuricemia-induced renal inflammation and fibrosis via ABCG2-dependent mechanisms. Biochem Pharmacol. 218:1159012023. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Dong Y, Zhou H, Liu J and Zhao W: MiR-143-3p directly targets GLUT9 to reduce uric acid reabsorption and inflammatory response of renal tubular epithelial cells. Biochem Biophys Res Commun. 517:413–420. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mandal AK and Mount DB: The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 77:323–345. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roughley MJ, Belcher J, Mallen CD and Roddy E: Gout and risk of chronic kidney disease and nephrolithiasis: Meta-analysis of observational studies. Arthritis Res Ther. 17:902015. View Article : Google Scholar : PubMed/NCBI | |
Nagaraju SP, Shenoy SV, Rao I, Prabhu RA, Rangaswamy D, Bhojaraja MV and Guddattu V: Effect of febuxostat versus allopurinol on the glomerular filtration rate and hyperuricemia in patients with chronic kidney disease. Saudi J Kidney Dis Transpl. 34:279–287. 2023. View Article : Google Scholar : PubMed/NCBI | |
Agnoletti D, Cicero AFG and Borghi C: The impact of uric acid and hyperuricemia on cardiovascular and renal systems. Cardiol Clin. 39:365–376. 2021. View Article : Google Scholar : PubMed/NCBI | |
Balakumar P, Alqahtani A, Khan NA, Mahadevan N and Dhanaraj SA: Mechanistic insights into hyperuricemia-associated renal abnormalities with special emphasis on epithelial-to-mesenchymal transition: Pathologic implications and putative pharmacologic targets. Pharmacol Res. 161:1052092020. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Wang L, Yang T, Xiong C, Xu L, Shi Y, Bao W, Chin YE, Cheng SB, Yan H, et al: EGF receptor inhibition alleviates hyperuricemic nephropathy. J Am Soc Nephrol. 26:2716–2729. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pan J, Shi M, Li L, Liu J, Guo F, Feng Y, Ma L and Fu P: Pterostilbene, a bioactive component of blueberries, alleviates renal fibrosis in a severe mouse model of hyperuricemic nephropathy. Biomed Pharmacother. 109:1802–1808. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hassan W, Shrestha P, Sumida K, Thomas F, Sweeney PL, Potukuchi PK, Rhee CM, Streja E, Kalantar-Zadeh K and Kovesdy CP: Association of uric acid-lowering therapy with incident chronic kidney disease. JAMA Netw Open. 5:e22158782022. View Article : Google Scholar : PubMed/NCBI | |
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group: KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 105((4S)): S117–S314. 2024.PubMed/NCBI | |
Luo Y, Song Q, Li J, Fu S, Yu W, Shao X, Li J, Huang Y, Chen J and Tang Y: Effects of uric acid-lowering therapy (ULT) on renal outcomes in CKD patients with asymptomatic hyperuricemia: A systematic review and meta-analysis. BMC Nephrol. 25:632024. View Article : Google Scholar : PubMed/NCBI | |
Kanbay M, Huddam B, Azak A, Solak Y, Kadioglu GK, Kirbas I, Duranay M, Covic A and Johnson RJ: A randomized study of allopurinol on endothelial function and estimated glomular filtration rate in asymptomatic hyperuricemic subjects with normal renal function. Clin J Am Soc Nephrol. 6:1887–1894. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kanbay M, Ozkara A, Selcoki Y, Isik B, Turgut F, Bavbek N, Uz E, Akcay A, Yigitoglu R and Covic A: Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearence, and proteinuria in patients with normal renal functions. Int Urol Nephrol. 39:1227–1233. 2007. View Article : Google Scholar : PubMed/NCBI | |
Miake J, Hisatome I, Tomita K, Isoyama T, Sugihara S, Kuwabara M, Ogino K and Ninomiya H: Impact of hyper- and hypo-uricemia on kidney function. Biomedicines. 11:12582023. View Article : Google Scholar : PubMed/NCBI | |
Tang GY, Li S, Xu Y, Zhang C, Xu XY, Xu L, Wang N and Feng Y: Renal herb formula protects against hyperuricemic nephropathy by inhibiting apoptosis and inflammation. Phytomedicine. 116:1548122023. View Article : Google Scholar : PubMed/NCBI | |
Ren Q, Tao S, Guo F, Wang B, Yang L, Ma L and Fu P: Natural flavonol fisetin attenuated hyperuricemic nephropathy via inhibiting IL-6/JAK2/STAT3 and TGF-β/SMAD3 signaling. Phytomedicine. 87:1535522021. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Li H, Liu Z, Li C, Chen Y, Jiang C, Yu Y and Tian Z: Impaired intestinal barrier function in a mouse model of hyperuricemia. Mol Med Rep. 20:3292–3300. 2019.PubMed/NCBI | |
Jalal DI, Chonchol M, Chen W and Targher G: Uric acid as a target of therapy in CKD. Am J Kidney Dis. 61:134–146. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Shi Y, Chen H, Tao M, Zhou X, Li J, Ma X, Wang Y and Liu N: Blockade of autophagy prevents the progression of hyperuricemic nephropathy through inhibiting NLRP3 inflammasome-mediated pyroptosis. Front Immunol. 13:8584942022. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Tao M, Ma X, Hu Y, Huang G, Qiu A, Zhuang S and Liu N: Delayed treatment with an autophagy inhibitor 3-MA alleviates the progression of hyperuricemic nephropathy. Cell Death Dis. 11:4672020. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Li W, Hao Y, Peng Z, Zou Z, Wei J, Zhou Y, Liang W and Cao Y: The SGLT2 inhibitor dapagliflozin ameliorates renal fibrosis in hyperuricemic nephropathy. Cell Rep Med. 5:1016902024. View Article : Google Scholar : PubMed/NCBI | |
Pan J, Zhang C, Shi M, Guo F, Liu J, Li L, Ren Q, Tao S, Tang M, Ye H, et al: Ethanol extract of Liriodendron chinense (Hemsl.) Sarg barks attenuates hyperuricemic nephropathy by inhibiting renal fibrosis and inflammation in mice. J Ethnopharmacol. 264:1132782021. View Article : Google Scholar : PubMed/NCBI | |
Asma Sakalli A, Küçükerdem HS and Aygün O: What is the relationship between serum uric acid level and insulin resistance?: A case-control study. Medicine (Baltimore). 102:e367322023. View Article : Google Scholar : PubMed/NCBI | |
Eckel RH, Grundy SM and Zimmet PZ: The metabolic syndrome. Lancet. 365:1415–1428. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lann D and LeRoith D: Insulin resistance as the underlying cause for the metabolic syndrome. Med Clin North Am. 911063–1077. (viii)2007. View Article : Google Scholar : PubMed/NCBI | |
Dong M, Chen H, Wen S, Yuan Y, Yang L, Xu D and Zhou L: The mechanism of sodium-glucose cotransporter-2 inhibitors in reducing uric acid in type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 16:437–445. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dalbeth N, Gosling AL, Gaffo A and Abhishek A: Gout. Lancet. 397:1843–1855. 2021. View Article : Google Scholar : PubMed/NCBI | |
So A and Thorens B: Uric acid transport and disease. J Clin Invest. 120:1791–1799. 2010. View Article : Google Scholar : PubMed/NCBI | |
Toyoki D, Shibata S, Kuribayashi-Okuma E, Xu N, Ishizawa K, Hosoyamada M and Uchida S: Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2. Am J Physiol Renal Physiol. 313:F826–F834. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stack AG, Dronamraju N, Parkinson J, Johansson S, Johnsson E, Erlandsson F and Terkeltaub R: Effect of intensive urate lowering with combined verinurad and febuxostat on albuminuria in patients with type 2 diabetes: A randomized trial. Am J Kidney Dis. 77:481–489. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jalal DI, Rivard CJ, Johnson RJ, Maahs DM, McFann K, Rewers M and Snell-Bergeon JK: Serum uric acid levels predict the development of albuminuria over 6 years in patients with type 1 diabetes: Findings from the coronary artery calcification in type 1 diabetes study. Nephrol Dial Transplant. 25:1865–1869. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pacilli A, Viazzi F, Fioretto P, Giorda C, Ceriello A, Genovese S, Russo G, Guida P, Pontremoli R and De Cosmo S; AMD-Annals Study Group, : Epidemiology of diabetic kidney disease in adult patients with type 1 diabetes in Italy: The AMD-Annals initiative. Diabetes Metab Res Rev. 33:2017. View Article : Google Scholar : PubMed/NCBI | |
Tafese R, Genet S and Addisu S: Association of serum total bilirubin and uric acid with low glomerular filtration rate diabetic kidney disease in type 2 diabetic patients. Diabetes Metab Syndr Obes. 15:3993–3999. 2022. View Article : Google Scholar : PubMed/NCBI | |
Han R, Duan L, Zhang Y and Jiang X: Serum uric acid is a better indicator of kidney impairment than serum uric acid-to-creatinine ratio and serum uric acid-to-high-density lipoprotein ratio: A cross-sectional study of type 2 diabetes mellitus patients. Diabetes Metab Syndr Obes. 16:2695–2703. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ji P, Zhu J, Feng J, Li H, Yu Q, Qin H, Wei L and Zhang J: Serum uric acid levels and diabetic kidney disease in patients with type 2 diabetes mellitus: A dose-response meta-analysis. Prim Care Diabetes. 16:457–465. 2022. View Article : Google Scholar : PubMed/NCBI | |
Badve SV, Pascoe EM, Tiku A, Boudville N, Brown FG, Cass A, Clarke P, Dalbeth N, Day RO, de Zoysa JR, et al: Effects of allopurinol on the progression of chronic kidney disease. N Engl J Med. 382:2504–2513. 2020. View Article : Google Scholar : PubMed/NCBI | |
Doria A, Galecki AT, Spino C, Pop-Busui R, Cherney DZ, Lingvay I, Parsa A, Rossing P, Sigal RJ, Afkarian M, et al: Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N Engl J Med. 382:2493–2503. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rhee CM, Ahmadi SF and Kalantar-Zadeh K: The dual roles of obesity in chronic kidney disease: A review of the current literature. Curr Opin Nephrol Hypertens. 25:208–216. 2016. View Article : Google Scholar : PubMed/NCBI | |
Panwar B, Hanks LJ, Tanner RM, Muntner P, Kramer H, McClellan WM, Warnock DG, Judd SE and Gutiérrez OM: Obesity, metabolic health, and the risk of end-stage renal disease. Kidney Int. 87:1216–1222. 2015. View Article : Google Scholar : PubMed/NCBI | |
Di Sessa A, Passaro AP, Colasante AM, Cioffi S, Guarino S, Umano GR, Papparella A, Miraglia Del Giudice E and Marzuillo P: Kidney damage predictors in children with metabolically healthy and metabolically unhealthy obesity phenotype. Int J Obes (Lond). 47:1247–1255. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mills DW, Woolley DM, Ammori BJ, Chinoy H and Syed AA: Changes in serum urate levels after bariatric surgery in patients with obesity: An observational study. Obes Surg. 34:1737–1741. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ye W, Zhou X, Xu Y, Zheng C and Liu P: Serum uric acid levels among chinese children: Reference values and association with overweight/obesity. Clin Pediatr (Phila). 63:1684–1690. 2024. View Article : Google Scholar : PubMed/NCBI | |
Nielsen SM, Bartels EM, Henriksen M, Wæhrens EE, Gudbergsen H, Bliddal H, Astrup A, Knop FK, Carmona L, Taylor WJ, et al: Weight loss for overweight and obese individuals with gout: A systematic review of longitudinal studies. Ann Rheum Dis. 76:1870–1882. 2017. View Article : Google Scholar : PubMed/NCBI | |
Choi HK and Zhang YQ: Bariatric surgery as urate-lowering therapy in severe obesity. Ann Rheum Dis. 73:791–793. 2014. View Article : Google Scholar : PubMed/NCBI | |
Andres-Hernando A, Cicerchi C, Kuwabara M, Orlicky DJ, Sanchez-Lozada LG, Nakagawa T, Johnson RJ and Lanaspa MA: Umami-induced obesity and metabolic syndrome is mediated by nucleotide degradation and uric acid generation. Nat Metab. 3:1189–1201. 2021. View Article : Google Scholar : PubMed/NCBI | |
Primo D, Izaola O and de Luis D: Resistin/uric acid index as a marker of metabolic syndrome in females with obesity. Int J Obes (Lond). 47:393–398. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Zhang H, Han X, Zhang P and Mao Z: Uric acid level changes after bariatric surgery in obese subjects with type 2 diabetes mellitus. Ann Transl Med. 7:3322019. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Bai Z, Chen Y, Li Y, Tang M, Wang N, Zhu X, Dai H and Zhang W: Effects of bariatric surgery on serum uric acid in people with obesity with or without hyperuricaemia and gout: A retrospective analysis. Rheumatology (Oxford). 60:3628–3634. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qu X, Zheng L, Zu B, Jia B and Lin W: Prevalence and clinical predictors of hyperuricemia in chinese bariatric surgery patients. Obes Surg. 32:1508–1515. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yeo C, Kaushal S, Lim B, Syn N, Oo AM, Rao J, Koura A and Yeo D: Impact of bariatric surgery on serum uric acid levels and the incidence of gout-A meta-analysis. Obes Rev. 20:1759–1770. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vafa L, Amini M, Kamran H, Aghakhani L, Hosseini SV, Mohammadi Z and Haghighat N: The impact of obesity surgery on serum uric acid in people with severe obesity: A retrospective study. Clin Nutr Res. 12:21–28. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dos Santos M, Veronese FV and Moresco RN: Uric acid and kidney damage in systemic lupus erythematosus. Clin Chim Acta. 508:197–205. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hafez EA, Hassan SAEM, Teama MAM and Badr FM: Serum uric acid as a predictor for nephritis in Egyptian patients with systemic lupus erythematosus. Lupus. 30:378–384. 2021. View Article : Google Scholar : PubMed/NCBI | |
Calich AL, Borba EF, Ugolini-Lopes MR, da Rocha LF, Bonfá E and Fuller R: Serum uric acid levels are associated with lupus nephritis in patients with normal renal function. Clin Rheumatol. 37:1223–1228. 2018. View Article : Google Scholar : PubMed/NCBI | |
Reátegui-Sokolova C, Ugarte-Gil MF, Gamboa-Cárdenas RV, Zevallos F, Cucho-Venegas JM, Alfaro-Lozano JL, Medina M, Rodriguez-Bellido Z, Pastor-Asurza CA, Alarcón GS and Perich-Campos RA: Serum uric acid levels contribute to new renal damage in systemic lupus erythematosus patients. Clin Rheumatol. 36:845–852. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ugolini-Lopes MR, Gavinier SS, Leon E, Viana VT, Borba EF and Bonfá E: Is serum uric acid a predictor of long-term renal outcome in lupus nephritis? Clin Rheumatol. 38:2777–2783. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Yang X, Zhang X and An Z: Analysis of expression levels of IL-17 and IL-34 and influencing factors for prognosis in patients with lupus nephritis. Exp Ther Med. 17:2279–2283. 2019.PubMed/NCBI | |
Han Y, Lu X, Xiao S, Qin J, Zheng L, Feng Y, Cai Y, Qiu R, Huang Q and Yang M: Association between serum uric acid level and systemic lupus erythematosus kidney outcome: An observational study in Southern Chinese population and a meta-analysis. Lupus. 32:83–93. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhai T, Ma R, Luo C, Wang H and Liu L: Effects of uric acid-lowering therapy on the progression of chronic kidney disease: A systematic review and meta-analysis. Ren Fail. 40:289–297. 2018. View Article : Google Scholar : PubMed/NCBI | |
GBD 2019 Risk Factors Collaborators, . Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet. 396:1223–1249. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kimura Y, Yanagida T, Onda A, Tsukui D, Hosoyamada M and Kono H: Soluble uric acid promotes atherosclerosis via AMPK (AMP-activated protein kinase)-mediated inflammation. Arterioscler Thromb Vasc Biol. 40:570–582. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Iso H, Murakami Y, Miura K, Nagai M, Sugiyama D, Ueshima H and Okamura T; EPOCH-JAPAN GROUP, : Serum uric acid and mortality form cardiovascular disease: EPOCH-JAPAN study. J Atheroscler Thromb. 23:692–703. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kuwabara M, Niwa K, Hisatome I, Nakagawa T, Roncal-Jimenez CA, Andres-Hernando A, Bjornstad P, Jensen T, Sato Y, Milagres T, et al: Asymptomatic hyperuricemia without comorbidities predicts cardiometabolic diseases: Five-year japanese cohort study. Hypertension. 69:1036–1044. 2017. View Article : Google Scholar : PubMed/NCBI | |
Perticone M, Maio R, Shehaj E, Gigliotti S, Caroleo B, Suraci E, Sciacqua A, Andreozzi F and Perticone F: Sex-related differences for uric acid in the prediction of cardiovascular events in essential hypertension. A population prospective study. Cardiovasc Diabetol. 22:2982023. View Article : Google Scholar : PubMed/NCBI | |
NCD Risk Factor Collaboration (NCD-RisC), . Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 398:957–980. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gois PHF and Souza ERM: Pharmacotherapy for hyperuricemia in hypertensive patients. Cochrane Database Syst Rev. 4:Cd0086522017.PubMed/NCBI | |
Viazzi F, Leoncini G, Ratto E, Falqui V, Parodi A, Conti N, Derchi LE, Tomolillo C, Deferrari G and Pontremoli R: Mild hyperuricemia and subclinical renal damage in untreated primary hypertension. Am J Hypertens. 20:1276–1282. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lanaspa MA, Andres-Hernando A and Kuwabara M: Uric acid and hypertension. Hypertens Res. 43:832–834. 2020. View Article : Google Scholar : PubMed/NCBI | |
Soletsky B and Feig DI: Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension. 60:1148–1156. 2012. View Article : Google Scholar : PubMed/NCBI | |
Feig DI, Soletsky B and Johnson RJ: Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: A randomized trial. JAMA. 300:924–932. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yu MA, Sánchez-Lozada LG, Johnson RJ and Kang DH: Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 28:1234–1242. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mazzali M, Hughes J, Kim YG, Jefferson JA, Kang DH, Gordon KL, Lan HY, Kivlighn S and Johnson RJ: Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 38:1101–1106. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kanbay M, Solak Y, Dogan E, Lanaspa MA and Covic A: Uric acid in hypertension and renal disease: The chicken or the egg? Blood Purif. 30:288–295. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Wang Y, Cheng J, Huangfu N, Zhao R, Xu Z, Zhang F, Zheng W and Zhang D: Hyperuricemia and cardiovascular disease. Curr Pharm Des. 25:700–709. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ilatovskaya DV, Behr A, Staruschenko A, Hall G and Palygin O: Mechanistic insights into redox damage of the podocyte in hypertension. Hypertension. Nov 13–2024.(Epub ahead of print). PubMed/NCBI | |
Russo E, Bussalino E, Macciò L, Verzola D, Saio M, Esposito P, Leoncini G, Pontremoli R and Viazzi F: Non-haemodynamic mechanisms underlying hypertension-associated damage in target kidney components. Int J Mol Sci. 24:94222023. View Article : Google Scholar : PubMed/NCBI | |
Peng X, Li X, Xie B, Lai Y, Sosnik A, Boucetta H, Chen Z and He W: Gout therapeutics and drug delivery. J Control Release. 362:728–754. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sivera F, Andrés M and Quilis N: Gout: Diagnosis and treatment. Med Clin (Barc). 148:271–276. 2017.(In English, Spanish). View Article : Google Scholar : PubMed/NCBI | |
Stamp LK and Barclay ML: How to prevent allopurinol hypersensitivity reactions? Rheumatology (Oxford). 57 (Suppl 1):i35–i41. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stamp LK, Chapman PT and Palmer SC: Allopurinol and kidney function: An update. Joint Bone Spine. 83:19–24. 2016. View Article : Google Scholar : PubMed/NCBI | |
Punzi L, Galozzi P, Luisetto R, Scanu A, Ramonda R and Oliviero F: Gout: One year in review 2023. Clin Exp Rheumatol. 42:1–9. 2024.PubMed/NCBI | |
Goicoechea M, Garcia de Vinuesa S, Verdalles U, Verde E, Macias N, Santos A, Pérez de Jose A, Cedeño S, Linares T and Luño J: Allopurinol and progression of CKD and cardiovascular events: Long-term follow-up of a randomized clinical trial. Am J Kidney Dis. 65:543–549. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Chen L and Du Y: Comparison of the efficacy and safety of benzbromarone and febuxostat in gout and hyperuricemia: A systematic review and meta-analysis. Clin Rheumatol. 43:1745–1754. 2024. View Article : Google Scholar : PubMed/NCBI | |
FitzGerald JD, Dalbeth N, Mikuls T, Brignardello-Petersen R, Guyatt G, Abeles AM, Gelber AC, Harrold LR, Khanna D, King C, et al: 2020 American college of rheumatology guideline for the management of gout. Arthritis Rheumatol. 72:879–895. 2020. View Article : Google Scholar : PubMed/NCBI | |
McCormick N, Yokose C, Lu N, Wexler DJ, Aviña-Zubieta JA, De Vera MA, McCoy RG and Choi HK: Sodium-glucose cotransporter-2 inhibitors vs sulfonylureas for gout prevention among patients with type 2 diabetes receiving metformin. JAMA Intern Med. 184:650–660. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yokose C, Challener G, Jiang B, Zhou B, McCormick N, Tanikella S, Panchot KMQ, Kohler MJ, Yinh J, Zhang Y, et al: Serum urate change among gout patients treated with sodium-glucose cotransporter type 2 inhibitors vs sulfonylurea: A comparative effectiveness analysis. Semin Arthritis Rheum. 66:1524412024. View Article : Google Scholar : PubMed/NCBI | |
Saad M: Hyperuricemia and gout: The role of losartan. Sr Care Pharm. 38:359–360. 2023. View Article : Google Scholar : PubMed/NCBI | |
Costantino VV, Gil Lorenzo AF, Bocanegra V and Vallés PG: Molecular mechanisms of hypertensive nephropathy: Renoprotective effect of losartan through Hsp70. Cells. 10:31462021. View Article : Google Scholar : PubMed/NCBI | |
He YM, Feng L, Huo DM, Yang ZH and Liao YH: Enalapril versus losartan for adults with chronic kidney disease: A systematic review and meta-analysis. Nephrology (Carlton). 18:605–614. 2013. View Article : Google Scholar : PubMed/NCBI | |
Khazaeli M, Nunes ACF, Zhao Y, Khazaali M, Prudente J, Vaziri ND, Singh B and Lau WL: Tetrahydrocurcumin Add-On therapy to losartan in a rat model of diabetic nephropathy decreases blood pressure and markers of kidney injury. Pharmacol Res Perspect. 11:e010792023. View Article : Google Scholar : PubMed/NCBI | |
Zou J, Zhou X, Ma Y and Yu R: Losartan ameliorates renal interstitial fibrosis through metabolic pathway and Smurfs-TGF-β/Smad. Biomed Pharmacother. 149:1129312022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Ke S, Yan Y, Guo Y and Liu Q: Serum uric acid is associated with chronic kidney disease in elderly Chinese patients with diabetes. Ren Fail. 45:22388252023. View Article : Google Scholar : PubMed/NCBI | |
Aktas G, Yilmaz S, Kantarci DB, Duman TT, Bilgin S, Balci SB and Atak Tel BM: Is serum uric acid-to-HDL cholesterol ratio elevation associated with diabetic kidney injury? Postgrad Med. 135:519–523. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pilemann-Lyberg S, Lindhardt M, Persson F, Andersen S and Rossing P: Serum uric acid and progression of diabetic nephropathy in type 1 diabetes. J Diabetes Complications. 32:470–473. 2018. View Article : Google Scholar : PubMed/NCBI | |
D'Elia L, Masulli M, Cirillo P, Virdis A, Casiglia E, Tikhonoff V, Angeli F, Barbagallo CM, Bombelli M, Cappelli F, et al: Serum uric acid/serum creatinine ratio and cardiovascular mortality in diabetic individuals-the uric acid right for heart health (URRAH) project. Metabolites. 14:1642024. View Article : Google Scholar : PubMed/NCBI | |
Ahola AJ, Sandholm N, Forsblom C, Harjutsalo V, Dahlström E and Groop PH; FinnDiane Study Group, : The serum uric acid concentration is not causally linked to diabetic nephropathy in type 1 diabetes. Kidney Int. 91:1178–1185. 2017. View Article : Google Scholar : PubMed/NCBI | |
Oh TR, Choi HS, Kim CS, Ryu DR, Park SH, Ahn SY, Kim SW, Bae EH and Ma SK: Serum uric acid is associated with renal prognosis of lupus nephritis in women but not in men. J Clin Med. 9:7732020. View Article : Google Scholar : PubMed/NCBI | |
Elnady B, Almalki A, Abdel-Fattah MM, Desouky DES and Attar M: Serum uric acid as a sensitive concordant marker with lupus nephritis and new onset of renal damage: A prospective cohort study. Clin Rheumatol. 40:1827–1834. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Qiu F, Liu J, Luo C and Liu X: Elevated serum uric acid is associated with renal arteriolopathy and predict poor outcome in patients with lupus nephritis. Clin Exp Rheumatol. 42:30–38. 2024.PubMed/NCBI | |
Wen Q, Tang X, Zhou Q, Chen W and Yu X: Clinicopathological patterns and outcomes in patients with lupus nephritis and hyperuricemia. J Clin Med. 11:30752022. View Article : Google Scholar : PubMed/NCBI | |
Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincón A, Arroyo D and Luño J: Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 5:1388–1393. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kwak CH, Sohn M, Han N, Cho YS, Kim YS and Oh JM: Effectiveness of febuxostat in patients with allopurinol-refractory hyperuricemic chronic kidney disease. Int J Clin Pharmacol Ther. 56:321–327. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kao MP, Ang DS, Gandy SJ, Nadir MA, Houston JG, Lang CC and Struthers AD: Allopurinol benefits left ventricular mass and endothelial dysfunction in chronic kidney disease. J Am Soc Nephrol. 22:1382–1389. 2011. View Article : Google Scholar : PubMed/NCBI | |
Smink PA, Bakker SJL, Laverman GD, Berl T, Cooper ME, de Zeeuw D and Lambers Heerspink HJ: An initial reduction in serum uric acid during angiotensin receptor blocker treatment is associated with cardiovascular protection: A post-hoc analysis of the RENAAL and IDNT trials. J Hypertens. 30:1022–1028. 2012. View Article : Google Scholar : PubMed/NCBI | |
Castilla-Ojo N, Turkson-Ocran RA, Conlin PR, Appel LJ, Miller ER III and Juraschek SP: Effects of the DASH diet and losartan on serum urate among adults with hypertension: Results of a randomized trial. J Clin Hypertens (Greenwich). 25:915–922. 2023. View Article : Google Scholar : PubMed/NCBI | |
Heerspink HJL, Stack AG, Terkeltaub R, Jongs N, Inker LA, Bjursell M, Maklad N, Perl S, Eklund O, Rikte T, et al: Combination treatment with verinurad and allopurinol in CKD: A randomized placebo and active controlled trial. J Am Soc Nephrol. 35:594–606. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xin W, Mi S and Lin Z: Allopurinol therapy improves vascular endothelial function in subjects at risk for cardiovascular diseases: A meta-analysis of randomized controlled trials. Cardiovasc Ther. 34:441–449. 2016. View Article : Google Scholar : PubMed/NCBI | |
Konishi M, Kojima S, Uchiyama K, Yokota N, Tokutake E, Wakasa Y, Hiramitsu S, Waki M, Jinnouchi H, Kakuda H, et al: Effect of febuxostat on clinical outcomes in patients with hyperuricemia and cardiovascular disease. Int J Cardiol. 349:127–133. 2022. View Article : Google Scholar : PubMed/NCBI |