Viruses and psychiatric disorders: We have not crossed the borderline from hypothesis to proof yet (Review)
- Authors:
- Nikolaos Siafakas
- Cleo Anastassopoulou
- Spyridon Pournaras
- Athanasios Tsakris
- Evangelos Alevizakis
- Stylianos Kympouropoulos
- Demetrios A. Spandidos
- Emmanouil Rizos
-
Affiliations: Clinical Microbiology Laboratory, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece, Laboratory of Microbiology, National and Kapodistrian University of Athens, Medical School, 11527 Athens, Greece, 2nd Department of Psychiatry, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece - Published online on: December 31, 2024 https://doi.org/10.3892/mmr.2024.13426
- Article Number: 61
-
Copyright: © Siafakas et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Nasir A, Forterre P, Kim KM and Caetano-Anollés G: The distribution and impact of viral lineages in domains of life. Front Microbiol. 5:1942014. View Article : Google Scholar : PubMed/NCBI | |
Call L, Nayfach S and Kyrpides NC: Illuminating the virosphere through global metagenomics. Annu Rev Biomed Data Sci. 4:369–391. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, Ardyna M, Arkhipova K, Carmichael M, Cruaud C, et al: Marine DNA viral macro- and microdiversity from pole to pole. Cell. 177:1109–1123.e14. 2019. View Article : Google Scholar : PubMed/NCBI | |
Neri U, Wolf YI, Roux S, Camargo AP, Lee B, Kazlauskas D, Chen IM, Ivanova N, Zeigler Allen L, Paez-Espino D, et al: Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell. 185:4023–4037.e18. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mohapatra S and Menon NG: Factors responsible for the emergence of novel viruses: An emphasis on SARS-CoV-2. Curr Opin Environ Sci Health. 27:1003582022. View Article : Google Scholar : PubMed/NCBI | |
Marie V and Gordon ML: The (Re-)emergence and spread of viral zoonotic disease: A perfect storm of human ingenuity and stupidity. Viruses. 15:16382023. View Article : Google Scholar : PubMed/NCBI | |
Piret J and Boivin G: Pandemics throughout history. Front Microbiol. 11:6317362021. View Article : Google Scholar : PubMed/NCBI | |
Davis HE, McCorkell L, Vogel JM and Topol EJ: Long COVID: Major findings, mechanisms and recommendations. Nat Rev Microbiol. 21:133–146. 2023. View Article : Google Scholar : PubMed/NCBI | |
Boufidou F, Medić S, Lampropoulou V, Siafakas N, Tsakris A and Anastassopoulou C: SARS-CoV-2 reinfections and long COVID in the post-omicron phase of the pandemic. Int J Mol Sci. 24:129622023. View Article : Google Scholar : PubMed/NCBI | |
Castanares-Zapatero D, Chalon P, Kohn L, Dauvrin M, Detollenaere J, Maertens de Noordhout C, Primus-de Jong C, Cleemput I and Van den Heede K: Pathophysiology and mechanism of long COVID: A comprehensive review. Ann Med. 54:1473–1487. 2022. View Article : Google Scholar : PubMed/NCBI | |
Virgin HW, Wherry EJ and Ahmed R: Redefining chronic viral infection. Cell. 138:30–50. 2009. View Article : Google Scholar : PubMed/NCBI | |
Grandi N and Tramontano E: HERV envelope proteins: Physiological role and pathogenic potential in cancer and autoimmunity. Front Microbiol. 9:4622018. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Liang JQ and Zheng S: Expressional activation and functional roles of human endogenous retroviruses in cancers. Rev Med Virol. 29:e20252019. View Article : Google Scholar : PubMed/NCBI | |
Luganini A and Gribaudo G: Retroviruses of the human virobiota: The recycling of viral genes and the resulting advantages for human hosts during evolution. Front Microbiol. 11:11402020. View Article : Google Scholar : PubMed/NCBI | |
Liang G and Bushman FD: The human virome: Assembly, composition and host interactions. Nat Rev Microbiol. 19:514–527. 2021. View Article : Google Scholar : PubMed/NCBI | |
Seo SU and Kweon MN: Virome-host interactions in intestinal health and disease. Curr Opin Virol. 37:63–71. 2019. View Article : Google Scholar : PubMed/NCBI | |
van Os J, Rutten BP and Poulton R: Gene-environment interactions in schizophrenia: Review of epidemiological findings and future directions. Schizophr Bull. 34:1066–1082. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pearce BD: Viruses and psychiatric disorders. Siegel A and Zalcman SS: The Neuroimmunological Basis of Behavior and Mental Disorders. Springer; Boston, MA: pp. 383–410. 2009, View Article : Google Scholar | |
Hobbs JA: The virus connection: How viruses affect psychiatric pathologies. Psychiatr Times. 33:2016.PubMed/NCBI | |
Müller N and Schwarz MJ: Immune system and schizophrenia. Curr Immunol Rev. 6:213–220. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fatemi SH and Folsom TD: The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull. 35:528–548. 2009. View Article : Google Scholar : PubMed/NCBI | |
Blomström Å, Karlsson H, Svensson A, Frisell T, Lee BK, Dal H, Magnusson C and Dalman C: Hospital admission with infection during childhood and risk for psychotic illness-a population-based cohort study. Schizophr Bull. 40:1518–1525. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hickie IB, Banati R, Stewart CH, Stewart CH and Lloyd AR: Are common childhood or adolescent infections risk factors for schizophrenia and other psychotic disorders? Med J Aust. 190 (S4):S17–S21. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liang W and Chikritzhs T: Early childhood infections and risk of schizophrenia. Psychiatry Res. 200:214–217. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maynard TM, Sikich L, Lieberman JA and LaMantia AS: Neural development, cell-cell signaling, and the ‘two-hit’ hypothesis of schizophrenia. Schizophr Bull. 27:457–476. 2001. View Article : Google Scholar : PubMed/NCBI | |
Debost JCPG, Larsen JT, Munk-Olsen T, Mortensen PB, Meyer U and Petersen L: Joint effects of exposure to prenatal infection and peripubertal psychological trauma in schizophrenia. Schizophr Bull. 43:171–179. 2017. View Article : Google Scholar : PubMed/NCBI | |
Raison CL, Borisov AS, Majer M, Drake DF, Pagnoni G, Woolwine BJ, Vogt GJ, Massung B and Miller AH: Activation of central nervous system inflammatory pathways by interferon-alpha: Relationship to monoamines and depression. Biol Psychiatry. 65:296–303. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rocamonde B, Hasan U, Mathieu C and Dutartre H: Viral-induced neuroinflammation: Different mechanisms converging to similar exacerbated glial responses. Front Neurosci. 17:11082122023. View Article : Google Scholar : PubMed/NCBI | |
Niranjan R, Muthukumaravel S and Jambulingam P: The involvement of neuroinfammation in dengue viral disease: Importance of innate and adaptive immunity. Neuroimmunomodulation. 26:111–118. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bogovic P and Strle F: Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J Clin Cases. 3:430–441. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lannes N, Neuhaus V, Scolari B, Kharoubi-Hess S, Walch M, Summerfield A and Filgueira L: Interactions of human microglia cells with Japanese encephalitis virus. Virol J. 14:82017. View Article : Google Scholar : PubMed/NCBI | |
Shao Q, Herrlinger S, Yang SL, Lai F, Moore JM, Brindley MA and Chen JF: Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development. 143:4127–4136. 2016. View Article : Google Scholar : PubMed/NCBI | |
de Sousa JR, Azevedo RSS, Martins Filho AJ, Araujo MTF, Moutinho ERC, Baldez Vasconcelos BC, Cruz ACR, Oliveira CS, Martins LC, Baldez Vasconcelos BH, et al: Correlation between apoptosis and in situ immune response in fatal cases of microcephaly caused by Zika virus. Am J Pathol. 188:2644–2652. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhao L, Luo Z, Zhang Y, Lv L, Zhao J, Sui B, Huang F, Cui M, Fu ZF and Zhou M: Interferon-λ attenuates rabies virus infection by inducing interferon-stimulated genes and alleviating neurological inflammation. Viruses. 12:4052020. View Article : Google Scholar : PubMed/NCBI | |
Marsland AL, Petersen KL, Sathanoori R, Muldoon MF, Neumann SA, Ryan C, Flory JD and Manuck SB: Interleukin-6 covaries inversely with cognitive performance among middle-aged community volunteers. Psychosom Med. 68:895–903. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dickerson SS, Gable SL, Irwin MR, Aziz N and Kemeny ME: Social-evaluative threat and proinflammatory cytokine regulation: An experimental laboratory investigation. Psychol Sci. 20:1237–1244. 2009. View Article : Google Scholar : PubMed/NCBI | |
Metcalf SA, Jones PB, Nordstrom T, Timonen M, Mäki P, Miettunen J, Jääskeläinen E, Järvelin MR, Stochl J, Murray GK, et al: Serum C-reactive protein in adolescence and risk of schizophrenia in adulthood: A prospective birth cohort study. Brain BehavImmun. 59:253–259. 2017. | |
Müller N: Inflammation in schizophrenia: Pathogenetic aspects and therapeutic considerations. Schizophr Bull. 44:973–982. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khandaker GM, Pearson RM, Zammit S, Lewis G and Jones PB: Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: A population-based longitudinal study. JAMA Psychiatry. 71:1121–1128. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maxeiner HG, Marion Schneider E, Kurfiss ST, Brettschneider J, Tumani H and Bechter K: Cerebrospinal fluid and serum cytokine profiling to detect immune control of infectious and inflammatory neurological and psychiatric diseases. Cytokine. 69:62–67. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sarma JV and Ward PA: The complement system. Cell Tissue Res. 343:227–235. 2011. View Article : Google Scholar : PubMed/NCBI | |
Keshavan M, Lizano P and Prasad K: The synaptic pruning hypothesis of schizophrenia: Promises and challenges. World Psychiatry. 19:110–111. 2020. View Article : Google Scholar : PubMed/NCBI | |
Druart M and Le Magueresse C: Emerging roles of complement in psychiatric disorders. Front Psychiatry. 10:5732019. View Article : Google Scholar : PubMed/NCBI | |
Mondelli V, Di Forti M, Morgan BP, Murray RM, Pariante CM and Dazzan P: Baseline high levels of complement component 4 predict worse clinical outcome at 1-year follow-up in first-episode psychosis. Brain BehavImmun. 88:913–915. 2020.PubMed/NCBI | |
Tomonaga K: Virus-induced neurobehavioral disorders: Mechanisms and implications. Trends Mol Med. 10:71–77. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kotsiri I, Resta P, Spyrantis A, Panotopoulos C, Chaniotis D, Beloukas A and Magiorkinis E: Viral infections and schizophrenia: A comprehensive review. Viruses. 15:13452023. View Article : Google Scholar : PubMed/NCBI | |
Sayeh A, Cheikh CB, Mrad M, Lakhal N, Gritli N, Galelli S, Oumaya A and Fekih-Mrissa N: Association of HLA-DR/DQ polymorphisms with schizophrenia in Tunisian patients. Ann Saudi Med. 34:503–507. 2014. View Article : Google Scholar : PubMed/NCBI | |
Prasard S, Semwal P, Deshpande S, Bhatia T, Nimgaonkar VL and Thelma BK: Molecular genetics of schizophrenia: Past, present and future. J Biosci. 27 (Suppl 1):S35–S52. 2002. View Article : Google Scholar | |
Wright P, Donaldson PT, Underhill JA, Choudhuri K, Doherty DG and Murray RM: Genetic association of the HLA DRB1 gene locus on chromosome 6p21.3 with schizophrenia. Am J Psychiatry. 153:1530–1533. 1996. View Article : Google Scholar : PubMed/NCBI | |
Nimgaonkar VL, Rudert WA, Zhang X, Trucco M and Ganguli R: Negative association of schizophrenia with HLA DQB1*0602: Evidence from a second African-American cohort. Schizophr Res. 23:81–86. 1997. View Article : Google Scholar : PubMed/NCBI | |
James LM, Charonis SA and Georgopoulos AP: Schizophrenia, human leukocyte antigen (HLA), and herpes viruses: Immunogenetic associations at the population level. Neurosci Insights. 18:263310552311664112023. View Article : Google Scholar : PubMed/NCBI | |
Wongchitrat P, Chanmee T and Govitrapong P: Molecular mechanisms associated with neurodegeneration of neurotropic viral infection. Mol Neurobiol. 61:2881–2903. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, Zhang N, Shi L, Qin CF and Xu Z: Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell. 19:120–126. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tiwari SK, Dang JW, Lin N, Qin Y, Wang S and Rana TM: Zika virus depletes neural stem cells and evades selective autophagy by suppressing the Fanconi anemia protein FANCC. EMBO Rep. 21:e491832020. View Article : Google Scholar : PubMed/NCBI | |
Gabriel E, Ramani A, Karow U, Gottardo M, Natarajan K, Gooi LM, Goranci-Buzhala G, Krut O, Peters F, Nikolic M, et al: Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell Stem Cell. 20:397–406.e5. 2017. View Article : Google Scholar : PubMed/NCBI | |
Crunfi F, Carregari VC, Veras FP, Silva LS, Nogueira MH, Antunes ASLM, Vendramini PH, Valença AGF, Brandão-Teles C, Zuccoli GDS, et al: Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci USA. 119:e22009601192022. View Article : Google Scholar | |
de Oliveira LG, de Souza Angelo Y, Yamamoto P, Carregari VC, Crunfli F, Reis-de-Oliveira G, Costa L, Vendramini PH, Duque ÉA, Dos Santos NB, et al: SARS-CoV-2 infection impacts carbon metabolism and depends on glutamine for replication in Syrian hamster astrocytes. J Neurochem. 163:113–132. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fan Y and He JJ: HIV-1 Tat induces unfolded protein response and endoplasmic reticulum stress in astrocytes and causes neurotoxicity through glial fbrillary acidic protein (GFAP) activation and aggregation. J Biol Chem. 291:22819–22829. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou BY, Liu Y, Kim BO, Xiao Y and He JJ: Astrocyte activation and dysfunction and neuron death by HIV-1 Tat expression in astrocytes. Mol Cell Neurosci. 27:296–305. 2004. View Article : Google Scholar : PubMed/NCBI | |
Teodorof-Diedrich C and Spector SA: Human immunodeficiency virus type 1 gp120 and Tat induce mitochondrial fragmentation and incomplete mitophagy in human neurons. J Virol. 92:e00993–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
McGavern DB and Kang SS: Illuminating viral infections in the nervous system. Nat Rev Immunol. 11:318–329. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bhatia MS, Gautam P and Jhanjee A: Psychiatric morbidity in patients with chikungunya Fever: First report from India. J Clin Diagn Res. 9:VC01–VC03. 2015.PubMed/NCBI | |
Figueiredo T, Dias da Costa M and Segenreich D: Manic episode after a chikungunya virus infection in a bipolar patient previously stabilized with valproic acid. J Clin Psychopharmacol. 38:395–397. 2018. View Article : Google Scholar : PubMed/NCBI | |
Samaan Z, McDermid Vaz S, Bawor M, Potter TH, Eskandarian S and Loeb M: Neuropsychological impact of west nile virus infection: An extensive neuropsychiatric assessment of 49 cases in Canada. PLoS One. 11:e01583642016. View Article : Google Scholar : PubMed/NCBI | |
Srivastava R, Kalita J, Khan MY and Misra UK: Free radical generation by neurons in rat model of Japanese encephalitis. Neurochem Res. 34:2141–2146. 2009. View Article : Google Scholar : PubMed/NCBI | |
James HJ, Sharer LR, Zhang Q, Wang HG, Epstein LG, Reed JC and Gelbard HA: Expression of caspase-3 in brains from paediatric patients with HIV-1 encephalitis. Neuropathol Appl Neurobiol. 25:380–386. 1999. View Article : Google Scholar : PubMed/NCBI | |
Du X, Wang H, Xu F, Huang Y, Liu Z and Liu T: Enterovirus 71 induces apoptosis of SH-SY5Y human neuroblastoma cells through stimulation of endogenous microRNA let-7b expression. Mol Med Rep. 12:953–959. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jackson AC and Rossiter JP: Apoptosis plays an important role in experimental rabies virus infection. J Virol. 71:5603–5607. 1997. View Article : Google Scholar : PubMed/NCBI | |
Rutherford M and Jackson AC: Neuronal apoptosis in immunodeficient mice infected with the challenge virus standard strain of rabies virus by intracerebral inoculation. J Neurovirol. 10:409–413. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jackson AC: Apoptosis in experimental rabies in bax-deficient mice. Acta Neuropathol. 98:288–294. 1999. View Article : Google Scholar : PubMed/NCBI | |
Fu ZF and Jackson AC: Neuronal dysfunction and death in rabies virus infection. J Neurovirol. 11:101–106. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kojima D, Park CH, Tsujikawa S, Kohara K, Hatai H, Oyamad T, Noguchi A and Inoue S: Lesions of the central nervous system induced by intracerebral inoculation of BALB/c mice with rabies virus (CVS-11). J Vet Med Sci. 72:1011–1016. 2010. View Article : Google Scholar : PubMed/NCBI | |
Parquet MC, Kumatori A, Hasebe F, Morita K and Igarashi A: West Nile virus-induced bax-dependent apoptosis. FEBS Lett. 500:17–24. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kleinschmidt MC, Michaelis M, Ogbomo H, Doerr HW and Cinatl J Jr: Inhibition of apoptosis prevents West Nile virus induced cell death. BMC Microbiol. 7:492007. View Article : Google Scholar : PubMed/NCBI | |
van Marle G, Antony J, Ostermann H, Dunham C, Hunt T, Halliday W, Maingat F, Urbanowski MD, Hobman T, Peeling J and Power C: West Nile virus-induced neuroinflammation: Glial infection and capsid protein-mediated neurovirulence. J Virol. 81:10933–10949. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang JS, Ramanathan MP, Muthumani K, Choo AY, Jin SH, Yu QC, Hwang DS, Choo DK, Lee MD, Dang K, et al: Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg Infect Dis. 8:1379–1384. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ramanathan MP, Chambers JA, Pankhong P, Chattergoon M, Attatippaholkun W, Dang K, Shah N and Weiner DB: Host cell killing by the West Nile virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway. Virology. 345:56–72. 2006. View Article : Google Scholar : PubMed/NCBI | |
Swarup V, Das S, Ghosh S and Basu A: Tumor necrosis factor receptor-1-induced neuronal death by TRADD contributes to the pathogenesis of Japanese encephalitis. J Neurochem. 103:771–783. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mishra MK and Basu A: Minocycline neuroprotects, reduces microglial activation, inhibits caspase 3 induction, and viral replication following Japanese encephalitis. J Neurochem. 105:1582–1595. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Tu S, Ding L, Jin M, Chen H and Zhou H: The role of autophagy in viral infections. J Biomed Sci. 30:52023. View Article : Google Scholar : PubMed/NCBI | |
Huang SC, Chang CL, Wang PS, Tsai Y and Liu HS: Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J Med Virol. 81:1241–1252. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu ZW, Zhuang ZC, Chen R, Wang XR, Zhang HL, Li SH, Wang ZY and Wen HL: Enterovirus 71 VP1 protein regulates viral replication in SH-SY5Y cells via the mTOR autophagy signaling pathway. Viruses. 12:112019. View Article : Google Scholar : PubMed/NCBI | |
Too IH, Yeo H, Sessions OM, Yan B, Libau EA, Howe JLC, Lim ZQ, Suku-Maran S, Ong WY, Chua KB, et al: Enterovirus 71 infection of motor neuron-like NSC-34 cells undergoes a non-lytic exit pathway. Sci Rep. 6:369832016. View Article : Google Scholar : PubMed/NCBI | |
Fields JA, Metcalf J, Overk C, Adame A, Spencer B, Wrasidlo W, Florio J, Rockenstein E, He JJ and Masliah E: The anticancer drug sunitinib promotes autophagyand protects from neurotoxicity in an HIV-1 Tat model of neurodegeneration. J Neurovirol. 23:290–303. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheney L, Guzik H, Macaluso FP, Macian F, Cuervo AM and Berman JW: HIV Nef and antiretroviral therapy have an inhibitory effect on autophagy in human astrocytes that may contribute to HIV-associated neurocognitive disorders. Cells. 9:14262020. View Article : Google Scholar : PubMed/NCBI | |
Fields J, Dumaop W, Elueteri S, Campos S, Serger E, Trejo M, Kosberg K, Adame A, Spencer B, Rockenstein E, et al: HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: Implications for HIV-associated neurocognitive disorders. J Neurosci. 35:1921–1938. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fischer M, Lindsey N, Staples JE and Hills S; Centers for Disease Control and Prevention (CDC), : Japanese encephalitis vaccines: Recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep. 59:1–27. 2010. | |
Unni SK, Růžek D, Chhatbar C, Mishra R, Johri MK and Singh SK: Japanese encephalitis virus: From genome to infectome. Microbes Infect. 13:312–321. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hu S, Sheng WS, Schachtele SJ and Lokensgard JR: Reactive oxygen species drive herpes simplex virus (HSV)-1-induced proinflammatory cytokine production by murine microglia. J Neuroinflammation. 8:1232011. View Article : Google Scholar : PubMed/NCBI | |
Kavouras JH, Prandovszky E, Valyi-Nagy K, Kovacs SK, Tiwari V, Kovacs M, Shukla D and Valyi-Nagy T: Herpes simplex virus type 1 infection induces oxidative stress and the release of bioactive lipid peroxidation by-products in mouse P19N neural cell cultures. J Neurovirol. 13:416–425. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gorska AM and Eugenin EA: The glutamate system as a crucial regulator of CNS toxicity and survival of HIV reservoirs. Front Cell Infect Microbiol. 10:2612020. View Article : Google Scholar : PubMed/NCBI | |
Alandijany T, Kammouni W, Roy Chowdhury SK, Fernyhough P and Jackson AC: Mitochondrial dysfunction in rabies virus infection of neurons. J Neurovirol. 19:537–549. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ghosh Roy S, Sadigh B, Datan E, Lockshin RA and Zakeri Z: Regulation of cell survival and death during flavivirus infections. World J Biol Chem. 5:93–105. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee S, Singh N, Sengupta N, Fatima M, Seth P, Mahadevan A, Shankar SK, Bhattacharyya A and Basu A: Japanese encephalitis virus induces human neural stem/progenitor cell death by elevating GRP78, PHB and hnRNPC through ER stress. Cell Death Dis. 8:e25562017. View Article : Google Scholar : PubMed/NCBI | |
Tan Z, Zhang W, Sun J, Fu Z, Ke X, Zheng C, Zhang Y, Li P, Liu Y, Hu Q, et al: ZIKV infection activates the IRE1-XBP1 and ATF6 pathways of unfolded protein response in neural cells. J Neuroinflammation. 15:2752018. View Article : Google Scholar : PubMed/NCBI | |
Hu DD, Mai JN, He LY, Li PQ, Chen WX, Yan JJ, Zhu WD, Deng L, Wei D, Liu DH, et al: Glucocorticoids prevent enterovirus 71 capsid protein VP1 induced calreticulin surface exposure by alleviating neuronal ER stress. Neurotox Res. 31:204–217. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheng ML, Weng SF, Kuo CH and Ho HY: Enterovirus 71 induces mitochondrial reactive oxygen species generation that is required for efficient replication. PLoS One. 9:e1132342014. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Xing Y, Pan R, Jiang M, Gong Z, Lin L, Wang J, Xiong G and Dong J: Curcumin protects microglia and primary rat cortical neurons against HIV-1 gp120-mediated inflammation and apoptosis. PLoS One. 8:e705652013. View Article : Google Scholar : PubMed/NCBI | |
Shah A, Kumar S, Simon SD, Singh DP and Kumar A: HIV gp120- and methamphetamine-mediated oxidative stress induces astrocyte apoptosis via cytochrome P450 2E1. Cell Death Dis. 4:e8502013. View Article : Google Scholar : PubMed/NCBI | |
Ivanov AV, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B and Isaguliants MG: Oxidative stress during HIV infection: Mechanisms and consequences. Oxid Med Cell Longev. 2016:89103962016. View Article : Google Scholar : PubMed/NCBI | |
Simanjuntak Y, Liang JJ, Lee YL and Lin YL: Japanese encephalitis virus exploits dopamine D2 receptor-phospholipase C to target dopaminergic human neuronal cells. Front Microbiol. 8:6512017. View Article : Google Scholar : PubMed/NCBI | |
Damsgaard J, Hjerrild S, Andersen H and Leutscher PDC: Long-term neuropsychiatric consequences of aseptic meningitis in adult patients. Infect Dis (Lond). 47:357–363. 2015. View Article : Google Scholar : PubMed/NCBI | |
Omland LH, Vestergaard BF and Wandall JH: Herpes simplex virus type 2 infections of the central nervous system: A retrospective study of 49 patients. Scand J Infect Dis. 40:59–62. 2008. View Article : Google Scholar : PubMed/NCBI | |
Persson A, Bergström T, Lindh M, Namvar L and Studahl M: Varicella-zoster virus CNS disease-viral load, clinical manifestations and sequels. J Clin Virol. 46:249–253. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sittinger H, Müller M, Schweizer I and Merkelbach S: Mild cognitive impairment after viral meningitis in adults. J Neurol. 249:554–560. 2002. View Article : Google Scholar : PubMed/NCBI | |
Du C, Li G and Han G: Biosafety and mental health: Virus induced cognitive decline. Biosaf Health. 5:159–167. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hare EH, Price JS and Slater E: Schizophrenia and season of birth. Br J Psychiatry. 120:124–125. 1972. View Article : Google Scholar : PubMed/NCBI | |
Machón RA, Mednick SA and Schulsinger F: The interaction of seasonality, place of birth, genetic risk and subsequent schizophrenia in a high risk sample. Br J Psychiatry. 143:383–388. 1983. View Article : Google Scholar : PubMed/NCBI | |
Pallast EG, Jongbloet PH, Straatman HM and Zielhuis GA: Excess seasonality of births among patients with schizophrenia and seasonal ovopathy. Schizophr Bull. 20:269–276. 1994. View Article : Google Scholar : PubMed/NCBI | |
Susser ES, Brown AS and Gorman JM: Prenatal exposures in schizophrenia. American Psychiatric Association; 1999 | |
Mednick SA, Machon RA, Huttunen MO and Bonett D: Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry. 45:189–192. 1988. View Article : Google Scholar : PubMed/NCBI | |
Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, Babulas VP and Susser ES: Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry. 61:774–780. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bonkovsky HL, Snow KK, Malet PF, Back-Madruga C, Fontana RJ, Sterling RK, Kulig CC, Di Bisceglie AM, Morgan TR, Dienstag JL, et al: Health-related quality of life in patients with chronic hepatitis C and advanced fibrosis. J Hepatol. 46:420–431. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gragnani L, Cerretelli G, Lorini S, Steidi C, Giovannelli A, Monti M, Petraccia L, Sadalla S, Urraro T, Caini P, et al: Interferon-free therapy in hepatitis C virus mixed cryoglobulinaemia: A prospective, controlled, clinical and quality of live analysis. Aliment Pharmacol Ther. 48:440–450. 2018. View Article : Google Scholar : PubMed/NCBI | |
Torrey EF, Bowler AE and Rawlings R: An influenza epidemic and the seasonality of schizophrenic births. Kurstak: Psychiatry and Biological Factors. Springer; Boston, MA: pp. 109–116. 1991, View Article : Google Scholar | |
Nicoll MP, Proença JT and Efstathiou S: The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev. 36:684–705. 2012. View Article : Google Scholar : PubMed/NCBI | |
Torrey EF, Leweke MF, Schwarz MJ, Mueller N, Bachmann S, Schroeder J, Dickerson F and Yolken RH: Cytomegalovirus and schizophrenia. CNS Drugs. 20:879–885. 2006. View Article : Google Scholar : PubMed/NCBI | |
Prasad KMR, Shirts BH, Yolken RH, Keshavan MS and Nimgaonkar VL: Brain morphological changes associated with exposure to HSV1 in first-episode schizophrenia. Mol Psychiatry. 12:105–113. 12007. View Article : Google Scholar : PubMed/NCBI | |
Burgdorf KS, Trabjerg BB, Pedersen MG, Nissen J, Banasik K, Pedersen OB, Sørensen E, Nielsen KR, Larsen MH, Erikstrup C, et al: Large-scale study of toxoplasma and cytomegalovirus shows an association between infection and serious psychiatric disorders. Brain BehavImmun. 79:152–158. 2019. | |
Dickerson F, Jones-Brando L, Ford G, Genovese G, Stallings C, Origoni A, O'Dushlaine C, Katsafanas E, Sweeney K, Khushalani S and Yolken R: Schizophrenia is associated with an aberrant immune response to epstein-barr virus. Schizophr Bull. 45:1112–1119. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dickerson FB, Boronow JJ, Stallings C, Origoni AE, Ruslanova I and Yolken RH: Association of serum antibodies to herpes simplex virus 1 with cognitive deficits in individuals with schizophrenia. Arch Gen Psychiatry. 60:466–472. 2003. View Article : Google Scholar : PubMed/NCBI | |
Thomas P, Bhatia T, Gauba D, Wood J, Long C, Prasad K, Dickerson FB, Gur RE, Gur RC, Yolken RH, et al: Exposure to herpes simplex virus, type 1 and reduced cognitive function. J Psychiatr Res. 47:1680–1685. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yolken RH, Torrey EF, Lieberman JA, Yang S and Dickerson FB: Serological evidence of exposure to herpes simplex virus type 1 is associated with cognitive deficits in the CATIE schizophrenia sample. Schizophr Res. 128:61–65. 2011. View Article : Google Scholar : PubMed/NCBI | |
Krause D, Matz J, Weidinger E, Wagner J, Wildenauer A, Obermeier M, Riedel M and Müller N: The association of infectious agents and schizophrenia. World J Biol Psychiatry. 11:739–743. 2010. View Article : Google Scholar : PubMed/NCBI | |
Waechter R, Ingraham E, Evans R, Cudjoe N, Krystosik A, Isaac R, Watts A, Noël T, Landon B, Fernandes M, et al: Pre and postnatal exposure to chikungunya virus does not affect child neurodevelopmental outcomes at two years of age. PLoS Negl Trop Dis. 14:e00085462020. View Article : Google Scholar : PubMed/NCBI | |
Mazzaro C, Quartuccio L, Adinolfi LE, Roccatello D, Pozzato G, Nevola R, Tonizzo M, Gitto S, Andreone P and Gattei V: A review on extrahepatic manifestations of chronic hepatitis C virus infection and the impact of direct-acting antiviral therapy. Viruses. 13:22492021. View Article : Google Scholar : PubMed/NCBI | |
Fishman SL, Murray JM, Eng FJ, Walewski JL, Morgello S and Branch AD: Molecular and bioinformatic evidence of hepatitis C virus evolution in brain. J Infect Dis. 197:597–607. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wilkinson J, Radkowski M and Laskus T: Hepatitis C virus neuroinvasion: Identification of infected cells. J Virol. 83:1312–1319. 2009. View Article : Google Scholar : PubMed/NCBI | |
Laskus T, Radkowski M, Bednarska A, Wilkinson J, Adair D, Nowicki M, Nikolopoulou GB, Vargas HE and Rakela J: Detection and analysis of hepatitis C virus sequences in cerebrospinal fluid. J Virol. 76:10064–10068. 2002. View Article : Google Scholar : PubMed/NCBI | |
Min S, Gandal MJ, Kopp RF, Liu C and Chen C: No increased detection of nucleic acids of CNS-related viruses in the brains of patients with schizophrenia, bipolar disorder, and autism spectrum disorder. Schizophr Bull. 49:551–558. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yolken RH, Kinnunen PM, Vapalahti O, Dickerson F, Suvisaari J, Chen O and Sabunciyan S: Studying the virome in psychiatric disease. Schizophr Res. 234:78–86. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kneeland RE and Fatemi SH: Viral infection, inflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 42:35–48. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gu CJ, Borjabad A, Hadas E, Kelschenbach J, Kim BH, Chao W, Arancio O, Suh J, Polsky B, McMillan J, et al: EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS Pathog. 14:e10070612018. View Article : Google Scholar : PubMed/NCBI | |
Gruchot J, Herrero F, Weber-Stadlbauer U, Meyer U and Küry P: Interplay between activation of endogenous retroviruses and inflammation as common pathogenic mechanism in neurological and psychiatric disorders. Brain BehavImmun. 107:242–252. 2023. | |
Kamitani W, Ono E, Yoshino S, Kobayashi T, Taharaguchi S, Lee BJ, Yamashita M, Kobayashi T, Okamoto M, Taniyama H, et al: Glial expression of Borna disease virus phosphoprotein induces behavioral and neurological abnormalities in transgenic mice. Proc Natl Acad Sci USA. 100:8969–8974. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li F, Sabunciyan S, Yolken RH, Lee D, Kim S and Karlsson H: Transcription of human endogenous retroviruses in human brain by RNA-seq analysis. PLoS One. 14:e02073532019. View Article : Google Scholar : PubMed/NCBI | |
Karlsson H, Bachmann S, Schröder J, McArthur J, Torrey EF and Yolken RH: Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci USA. 98:4634–4639. 2001. View Article : Google Scholar : PubMed/NCBI | |
Perron H, Hamdani N, Faucard R, Lajnef M, Jamain S, Daban-Huard C, Sarrazin S, LeGuen E, Houenou J, Delavest M, et al: Molecular characteristics of human endogenous retrovirus type-W in schizophrenia and bipolar disorder. Transl Psychiatry. 2:e2012012. View Article : Google Scholar : PubMed/NCBI | |
Tamouza R, Meyer U, Foiselle M, Richard JR, Wu CL, Boukouaci W, Le Corvoisier P, Barrau C, Lucas A, Perron H and Leboyer M: Identification of inflammatory subgroups of schizophrenia and bipolar disorder patients with HERV-W ENV antigenemia by unsupervised cluster analysis. Transl Psychiatry. 11:3772021. View Article : Google Scholar : PubMed/NCBI | |
Slokar G and Hasler G: Human endogenous retroviruses as pathogenic factors in the development of schizophrenia. Front Psychiatry. 6:1832016. View Article : Google Scholar : PubMed/NCBI | |
Jesuthasan A, Massey F, Manji H, Zandi MS and Wiethoff S: Emerging potential mechanisms and predispositions to the neurological manifestations of COVID-19. J Neurol Sci. 428:1176082021. View Article : Google Scholar : PubMed/NCBI | |
Guedj E, Campion JY, Dudouet P, Kaphan E, Bregeon F, Tissot-Dupont H, Guis S, Barthelemy F, Habert P, Ceccaldi M, et al: 18F-FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Med Mol Imaging. 48:2823–2833. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tromans S, Kinney M, Chester V, Alexander R, Roy A, Sander JW, Dudson H and Shankar R: Priority concerns for people with intellectual and developmental disabilities during the COVID-19 pandemic. BJPsych Open. 6:e1282020. View Article : Google Scholar : PubMed/NCBI | |
Holmes EA, O'Connor RC, Perry VH, Tracey I, Wessely S, Arsenault L, Ballard C, Christensen H, Cohen Silver R, Everall I, et al: Multidisciplinary research priorities for the COVID-19 pandemic: A call for action for mental health science. Lancet Psychiatry. 7:547–560. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ho CS, Chee CY and Ho RC: Mental health strategies to combat the psychological impact of coronavirus disease 2019 (COVID-19) beyond paranoia and panic. Ann Acad Med Singap. 49:155–160. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tsamakis K, Tsiptsios D, Ouranidis A, Mueller C, Schizas D, Terniotis C, Nikolakakis N, Tyros G, Kympouropoulos S, Lazaris A, et al: COVID-19 and its consequences on mental health (Review). Exp Ther Med. 21:2442021. View Article : Google Scholar : PubMed/NCBI | |
Efstathiou V, Stefanou MI, Demetriou M, Siafakas N, Makris M, Tsivgoulis G, Zoumpourlis V, Kympouropoulos SP, Tsoporis JN, Spandidos DA, et al: Long COVID and neuropsychiatric manifestations (Review). Exp Ther Med. 23:3632022. View Article : Google Scholar : PubMed/NCBI | |
Efstathiou V, Stefanou MI, Demetriou M, Siafakas N, Katsantoni E, Makris M, Tsivgoulis G, Zoumpourlis V, Kympouropoulos SP, Tsoporis JN, et al: New-onset neuropsychiatric sequelae and ‘long-COVID’ syndrome (Review). Exp Ther Med. 24:7052022. View Article : Google Scholar : PubMed/NCBI | |
Yuan K, Gong YM, Liu L, Sun YK, Tian SS, Wang YJ, Zhong Y, Zhang AY, Su SZ, Liu XX, et al: Prevalence of posttraumatic stress disorder after infectious disease pandemics in the twenty-first century, including COVID-19: A meta-analysis and systematic review. Mol Psychiatry. 26:4982–4998. 2021. View Article : Google Scholar : PubMed/NCBI | |
Antonelli G and Cutler S: Evolution of the Koch postulates: Towards a 21st-century understanding of microbial infection. Clin Microbiol Infect. 22:583–584. 2016. View Article : Google Scholar : PubMed/NCBI | |
Taquet M, Geddes JR, Husain M, Luciano S and Harrison PJ: 6-Month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry. 8:416–427. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schou TM, Joca S, Wegener G and Bay-Richter C: Psychiatric and neuropsychiatric sequelae of COVID-19-A systematic review. Brain Behav Immun. 97:328–348. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shanbehzadeh S, Tavahomi M, Zanjari N, Ebrahimi-Takamjani I and Amiri-Arimi S: Physical and mental health complications post-COVID-19: Scoping review. J Psychosom Res. 147:1105252021. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J, Wang L, Yang X, Yang M and Liu GP: Applications of multi-omics analysis in human diseases. MedComm (2020). 4:e3152023. View Article : Google Scholar : PubMed/NCBI | |
Ong K, Ng K, Ng C, Tan S, Teo W, Karim N, Kumar S and Wong KT: Neuronal infection is a major pathogenetic mechanism and cause of fatalities in human acute nipah virus encephalitis. Neuropathol Appl Neurobiol. 48:e128282022. View Article : Google Scholar : PubMed/NCBI | |
Mathieu C, Bovier FT, Ferren M, Lieberman NAP, Predella C, Lalande A, Peddu V, Lin MJ, Addetia A, Patel A, et al: Molecular features of the measles virus viral fusion complex that favor infection and spread in the brain. mBio. 12:e00799212021. View Article : Google Scholar : PubMed/NCBI |