1
|
GBD 2015 Disease and Injury Incidence and
Prevalence Collaborators, . Global, regional, national incidence,
prevalence, years lived with disability for 310 diseases and
injuries1990-2015: A systematic analysis for the global burden of
disease study 2015. Lancet. 388:1545–1602. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ngugi AK, Bottomley C, Kleinschmidt I,
Sander JW and Newton CR: Estimation of the burden of active and
life-time epilepsy: A meta-analytic approach. Epilepsia.
51:883–890. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fiest KM, Sauro KM, Wiebe S, Patten SB,
Kwon CS, Dykeman J, Pringsheim T, Lorenzetti DL and Jetté N:
Prevalence and incidence of epilepsy: A systematic review and
meta-analysis of international studies. Neurology. 88:296–303.
2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Van Rijckevorsel K: Cognitive problems
related to epilepsy syndromes, especially malignant epilepsies.
Seizure. 15:227–234. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Holmes GL: Cognitive impairment in
epilepsy: The role of network abnormalities. Epileptic Disord.
17:101–116. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Landi S, Petrucco L, Sicca F and Ratto GM:
Transient cognitive impairment in epilepsy. Front Mol Neurosci.
11:4582019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Helmstaedter C and Witt JA: Epilepsy and
cognition-A bidirectional relationship? Seizure. 49:83–89. 2017.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Straub LG and Scherer PE: Metabolic
messengers: Adiponectin. Nat Metab. 1:334–339. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Waragai M, Adame A, Trinh I, Sekiyama K,
Takamatsu Y, Une K, Masliah E and Hashimoto M: Possible involvement
of adiponectin, the anti-diabetes molecule, in the pathogenesis of
Alzheimer's disease. J Alzheimers Dis. 52:1453–1459. 2016.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Jian M, Kwan JSC, Bunting M, Ng RCL and
Chan KH: Adiponectin suppresses amyloid-β oligomer (AβO)-induced
inflammatory response of microglia via AdipoR1-AMPK-NF-κB signaling
pathway. J Neuroinflammation. 16:1102019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Guillod-Maximin E, Roy AF, Vacher CM,
Aubourg A, Bailleux V, Lorsignol A, Pénicaud L, Parquet M and
Taouis M: Adiponectin receptors are expressed in hypothalamus and
colocalized with proopiomelanocortin and neuropeptide Y in rodent
arcuate neurons. J Endocrinol. 200:93–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bloemer J, Pinky PD, Govindarajulu M, Hong
H, Judd R, Amin RH, Moore T, Dhanasekaran M, Reed MN and
Suppiramaniam V: Role of adiponectin in central nervous system
disorders. Neural Plast. 2018:45935302018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kusminski CM, Mcternan PG, Schraw T, Kos
K, O'Hare JP, Ahima R, Kumar S and Scherer PE: Adiponectin
complexes in human cerebrospinal fluid: Distinct complex
distribution from serum. Diabetologia. 50:634–642. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nishimura M, Izumiya Y, Higuchi A, Shibata
R, Qiu J, Kudo C, Shin HK, Moskowitz MA and Ouchi N: Adiponectin
prevents cerebral ischemic injury through endothelial nitric oxide
synthase dependent mechanisms. Circulation. 117:216–223. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Shen L, Miao J, Yuan F, Zhao Y, Tang Y,
Wang Y, Zhao Y and Yang GY: Overexpression of adiponectin promotes
focal angiogenesis in the mouse brain following middle cerebral
artery occlusion. Gene Ther. 20:93–101. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim MW, Abid NB, Jo MH, Jo MG, Yoon GH and
Kim MO: Suppression of adiponectin receptor 1 promotes memory
dysfunction and Alzheimer's disease-like pathologies. Sci Rep.
7:124352017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ng RC, Cheng OY, Jian M, Kwan JS, Ho PW,
Cheng KK, Yeung PK, Zhou LL, Hoo RL, Chung SK, et al: Chronic
adiponectin deficiency leads to Alzheimer's disease-like cognitive
impairments and pathologies through AMPK inactivation and cerebral
insulin resistance in aged mice. Mol Neurodegener. 11:712016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Bo X and Luo Z: The Latest Clinical
Guidelines for Diagnosis and Treatment of Epilepsy: Coexistence of
Opportunities and Challenges. Med J Peking Union Med Coll Hosp.
8:122–126. 2017.
|
19
|
Li C, Hong Y, Yang X, Zeng X,
Ocepek-Welikson K, Eimicke JP, Kong J, Sano M, Zhu C, Neugroschl J,
et al: The use of subjective cognitive complaints for detecting
mild cognitive impairment in older adults across cultural and
linguistic groups: A comparison of the cognitive function
instrument to the montreal cognitive assessment. Alzheimers Dement.
19:1764–1774. 2023. View Article : Google Scholar : PubMed/NCBI
|
20
|
Madore MR, Scott TM, Fairchild JK and
Yochim BP: Validity of the verbal naming test and boston naming
test in a sample of older veterans. Clin Neuropsychol.
36:1679–1690. 2022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Benedict RH and Smerbeck A: Construct
validity of the symbol-digit modalities test. Mult Scler.
29:483–485. 2023. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gottlieb A, Doniger GM, Kimel-Naor S,
Ben-Gal O, Cohen M, Iny H, Beeri MS and Plotnik M: Development and
validation of virtual reality-based rey auditory verbal learning
test. Front Aging Neurosci. 14:9800932022. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fan J, Shan W, Yang H, Zhu F, Liu X and
Wang Q: Neural activities in multiple rat brain regions in
lithium-pilocarpine-induced status epilepticus model. Front Mol
Neurosci. 12:3232020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang H, Zhao Y, Zhang D, Li J, Yang K,
Yang J and Li B: Neuroprotective effects of quinpirole on lithium
chloride pilocarpine-induced epilepsy in rats and its underlying
mechanisms. Eur J Med Res. 29:1212024. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lu J, Zhang Y, Pan X, Wang J, Yan G, Zhou
J, Zhu L, Chen X, Li Y and Pang W: A brief interpretation of AVMA
guidelines on euthanasia of animals: 2020 Edition. Lab Anim Comp
Med. 41:195–206. 2021.
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang L, Chen S, Liu C, Lin W and Huang H:
Factors for cognitive impairment in adult epileptic patients. Brain
Behav. 10:e014752020. View Article : Google Scholar : PubMed/NCBI
|
28
|
England MJ, Liverman CT, Schultz AM and
Strawbridge LM: Summary: A reprint from epilepsy across the
spectrum: promoting health and understanding. Epilepsy Curr.
12:245–253. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Rai VK, Shukla G, Afsar M, Poornima S,
Pandey RM, Rai N, Goyal V, Srivastava A, Vibha D and Behari M:
Memory, executive function and language function are similarly
impaired in both temporal and extra temporal refractory epilepsy-A
prospective study. Epilepsy Res. 109:72–80. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chakravarty K, Shukla G, Poornima S,
Agarwal P, Gupta A, Mohammed A, Ray S, Pandey RM, Goyal V,
Srivastava A and Behari M: Effect of sleep quality on memory,
executive function, and language performance in patients with
refractory focal epilepsy and controlled epilepsy versus healthy
controls-A prospective study. Epilepsy Behav. 92:176–183. 2019.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Brissart H, Forthoffer N and Maillard L:
Attention disorders in adults with epilepsy. Determinants and
therapeutic strategies. Rev Neurol (Paris). 175:135–140. 2019.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Khalife MR, Scott RC and Hernan AE:
Mechanisms for cognitive impairment in epilepsy: Moving beyond
seizures. Front Neurol. 13:8789912022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gauffin H, Landtblom AM, Vigren P, Frick
A, Engström M, McAllister A and Karlsson T: Similar profile and
magnitude of cognitive impairments in focal and generalized
epilepsy: A pilot study. Front Neuro. 12:7463812022. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bartha-Doering L and Trinka E: The
interictal language profile in adult epilepsy. Epilepsia.
55:1512–1525. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Simani L, Roozbeh M, Rostami M, Pakdaman
H, Ramezani M and Asadollahi M: Attention and inhibitory control
deficits in patients with genetic generalized epilepsy and
psychogenic nonepileptic seizure. Epilepsy Behav. 102:1066722020.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Turer AT and Scherer PE: Adiponectin:
Mechanistic insights and clinical implications. Diabetologia.
55:2319–2326. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS
and Lodish HF: T-cadherin is a receptor for hexameric and
high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad
Sci USA. 101:10308–10313. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu B, Liu J, Wang J, Sun F, Jiang S, Hu
F, Wang D, Liu D, Liu C and Yan H: Adiponectin protects against
cerebral ischemic injury through AdipoR1/AMPK pathways. Front
Pharmacol. 10:5972019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhao W, Kong F, Gong X, Guo Z, Zhao L and
Wang S: Activation of AdipoR1 with rCTRP9 preserves BBB integrity
through the APPL1/AMPK/Nrf2 signaling pathway in ICH mice. Oxid Med
Cell Longev. 2021:28012632021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Liu B, Liu J, Wang JG, Liu CL and Yan HJ:
AdipoRon improves cognitive dysfunction of Alzheimer's disease and
rescues impaired neural stem cell proliferation through
AdipoR1/AMPK pathway. Exp Neurol. 327:1132492020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bloemer J, Pinky PD, Smith WD,
Bhattacharya D, Chauhan A, Govindarajulu M, Hong H, Dhanasekaran M,
Judd R, Amin RH, et al: Adiponectin knockout mice display cognitive
and synaptic deficits. Front Endocrinol (Lausanne). 10:8192019.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Lee EB, Warmann G, Dhir R and Ahima RS:
Metabolic dysfunction associated with adiponectin deficiency
enhances kainic acid-induced seizure severity. J Neurosci.
31:14361–14366. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Okada-Iwabu M, Yamauchi T, Iwabu M, Honma
T, Hamagami K, Matsuda K, Yamaguchi M, Tanabe H, Kimura-Someya T,
Shirouzu M, et al: A small-molecule AdipoR agonist for type 2
diabetes and short life in obesity. Nature. 503:493–499. 2013.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Lee S and Kwak HB: Role of adiponectin in
metabolic and cardiovascular disease. J Exerc Rehabil. 10:54–59.
2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zheng J, Sun Z, Liang F, Xu W, Lu J, Shi
L, Shao A, Yu J and Zhang J: AdipoRon attenuates neuroinflammation
after intracerebral hemorrhage through AdipoR1-AMPK pathway.
Neuroscience. 412:116–130. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Khandelwal M, Manglani K, Upadhyay P, Azad
M and Gupta S: AdipoRon induces AMPK activation and ameliorates
Alzheimer's like pathologies and associated cognitive impairment in
APP/PS1 mice. Neurobiol Dis. 174:1058762022. View Article : Google Scholar : PubMed/NCBI
|
47
|
Yu J, Zheng J, Lu J, Sun Z, Wang Z and
Zhang J: AdipoRon protects against secondary brain injury after
intracerebral hemorrhage via alleviating mitochondrial dysfunction:
Possible involvement of AdipoR1-AMPK-PGC1α pathway. Neurochem Res.
44:1678–1689. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Yan W, Gao S, Zhang Q, Qi J, Liu G, Teng
Y, Wang J, Yan S and Ji B: AdipoRon inhibits neuroinflammation
induced by deep hypothermic circulatory arrest involving the
AMPK/NF-κB pathway in rats. Pharmaceutics. 14:24672022. View Article : Google Scholar : PubMed/NCBI
|
49
|
Delgado JY, Nall D and Selvin PR: Pin1
binding to phosphorylated PSD-95 regulates the number of functional
excitatory synapses. Front Mol Neurosci. 13:102020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Ampuero E, Jury N, Härtel S, Marzolo MP
and van Zundert B: Interfering of the Reelin/ApoER2/PSD95 signaling
axis reactivates dendritogenesis of mature hippocampal neurons. J
Cell Physiol. 232:1187–1199. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Choi UB, Strop P, Vrljic M, Chu S, Brunger
AT and Weninger KR: Single-molecule FRET-derived model of the
synaptotagmin 1-SNARE fusion complex. Nat Struct Mol Biol.
17:318–324. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Fossati G, Morini R, Corradini I,
Antonucci F, Trepte P, Edry E, Sharma V, Papale A, Pozzi D,
Defilippi P, et al: Reduced SNAP-25 increases PSD-95 mobility and
impairs spine morphogenesis. Cell Death Differ. 22:1425–1436. 2015.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Ma Q, Geng Y, Wang HL, Han B, Wang YY, Li
XL, Wang L and Wang MW: High frequency repetitive transcranial
magnetic stimulation alleviates cognitive impairment and modulates
hippocampal synaptic structural plasticity in aged mice. Front
Aging Neurosci. 11:2352019. View Article : Google Scholar : PubMed/NCBI
|
54
|
Haley GE, Kohama SG, Urbanski HF and Raber
J: Age-related decreases in SYN levels associated with increases in
MAP-2, apoE, and GFAP levels in the rhesus macaque prefrontal
cortex and hippocampus. Age (Dordr). 32:283–296. 2010. View Article : Google Scholar : PubMed/NCBI
|
55
|
Wi S, Yu JH, Kim M and Cho SR: In vivo
expression of reprogramming factors increases hippocampal
neurogenesis and synaptic plasticity in chronic hypoxic-ischemic
brain injury. Neural Plast. 2016:25808372016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Ferrer A, Caelles C, Massot N and Hegardt
FG: Activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl
coenzyme A reductase kinase by adenosine 5′-monophosphate. Biochem
Biophys Res Commun. 132:497–504. 1985. View Article : Google Scholar : PubMed/NCBI
|
57
|
Ramamurthy S, Chang E, Cao Y, Zhu J and
Ronnett GV: AMPK activation regulates neuronal structure in
developing hippocampal neurons. Neuroscience. 259:13–24. 2014.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Muraleedharan R, Gawali MV, Tiwari D,
Sukumaran A, Oatman N, Anderson J, Nardini D, Bhuiyan MAN, Tkáč I,
Ward AL, et al: AMPK-regulated astrocytic lactate shuttle plays a
non-cell-autonomous role in neuronal survival. Cell Rep.
32:1080922020. View Article : Google Scholar : PubMed/NCBI
|
59
|
Muraleedharan R, Nardini D, Waclaw RR and
Dasgupta B: Analysis of reactive astrogliosis in mouse brain using
in situ hybridization combined with immunohistochemistry. STAR
Protoc. 2:1003752021. View Article : Google Scholar : PubMed/NCBI
|
60
|
Lipton JO and Sahin M: The neurology of
mTOR. Neuron. 84:275–291. 2014. View Article : Google Scholar : PubMed/NCBI
|
61
|
Nguyen LH, Xu Y, Mahadeo T, Zhang L, Lin
TV, Born HA, Anderson AE and Bordey A: Expression of 4E-BP1 in
juvenile mice alleviates mTOR-induced neuronal dysfunction and
epilepsy. Brain. 145:1310–1325. 2022. View Article : Google Scholar : PubMed/NCBI
|
62
|
Laplante M and Sabatini DM: mTOR signaling
in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
63
|
Van Skike CE, Jahrling JB, Olson AB, Sayre
NL, Hussong SA, Ungvari Z, Lechleiter JD and Galvan V: Inhibition
of mTOR protects the blood-brain barrier in models of Alzheimer's
disease and vascular cognitive impairment. Am J Physiol Heart Circ
Physiol. 314:H693–H703. 2018. View Article : Google Scholar : PubMed/NCBI
|
64
|
Mcdaniel SS and Wong M: Therapeutic role
of mammalian target of rapamycin (mTOR) inhibition in preventing
epileptogenesis. Neurosci Lett. 497:231–239. 2011. View Article : Google Scholar : PubMed/NCBI
|