New insights into the role of complement system in colorectal cancer (Review)
- Authors:
- Yuwen Xu
- Jiaqi Zhou
- Yuanyuan Wu
- Jie Shen
- Xiaoyan Fu
- Meifang Liu
- Shujuan Liang
-
Affiliations: Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China - Published online on: January 9, 2025 https://doi.org/10.3892/mmr.2025.13433
- Article Number: 68
-
Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Wiese AV, Duhn J, Korkmaz R, Quell KM, Osman I, Ender F, Schröder T, Lewkowich I, Hogan S, Huber-Lang M, et al: C5aR1 activation in mice controls inflammatory eosinophil recruitment and functions in allergic asthma. Allergy. 78:1893–1908. 2023. View Article : Google Scholar : PubMed/NCBI | |
Khan MA, Nicolls MR, Surguladze B and Saadoun I: Complement components as potential therapeutic targets for asthma treatment. Respir Med. 108:543–549. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ali H and Panettieri RA Jr: Anaphylatoxin C3a receptors in asthma. Respir Res. 6:192005. View Article : Google Scholar : PubMed/NCBI | |
Khan MA, Maasch C, Vater A, Klussmann S, Morser J, Leung LL, Atkinson C, Tomlinson S, Heeger PS and Nicolls MR: Targeting complement component 5a promotes vascular integrity and limits airway remodeling. Proc Natl Acad Sci USA. 110:6061–6066. 2013. View Article : Google Scholar : PubMed/NCBI | |
Trambas IA, Coughlan MT and Tan SM: Therapeutic potential of targeting complement C5a receptors in diabetic kidney disease. Int J Mol Sci. 24:87582023. View Article : Google Scholar : PubMed/NCBI | |
Georg P, Astaburuaga-García R, Bonaguro L, Brumhard S, Michalick L, Lippert LJ, Kostevc T, Gäbel C, Schneider M, Streitz M, et al: Complement activation induces excessive T cell cytotoxicity in severe COVID-19. Cell. 185:493–512.e25. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ricklin D, Reis ES and Lambris JD: Complement in disease: A defence system turning offensive. Nat Rev Nephrol. 12:383–401. 2016. View Article : Google Scholar : PubMed/NCBI | |
Morgan BP and Harris CL: Complement, a target for therapy in inflammatory and degenerative diseases. Nat Rev Drug Discov. 14:857–877. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Song Y, Wang X, Shi M, Lin Y, Tao D and Han S: An NFAT1-C3a-C3aR positive feedback loop in tumor-associated macrophages promotes a glioma stem cell malignant phenotype. Cancer Immunol Res. 12:363–376. 2024. View Article : Google Scholar : PubMed/NCBI | |
Luan X, Lei T, Fang J, Liu X, Fu H, Li Y, Chu W, Jiang P, Tong C, Qi H and Fu Y: Blockade of C5a receptor unleashes tumor-associated macrophage antitumor response and enhances CXCL9-dependent CD8+ T cell activity. Mol Ther. 32:469–489. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J and Siegel RL: Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 72:409–436. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yenyuwadee S, Aliazis K, Wang Q, Christofides A, Shah R, Patsoukis N and Boussiotis VA: Immune cellular components and signaling pathways in the tumor microenvironment. Semin Cancer Biol. 86:187–201. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Qiao W, Li X, Ning ZK, Liu J, Dalangood S, Li H, Yu X, Zong Z, Wen Z and Gui J: Tumor-secreted FGF21 acts as an immune suppressor by rewiring cholesterol metabolism of CD8+T cells. Cell Metab. 36:630–647.e8. 2024. View Article : Google Scholar : PubMed/NCBI | |
Durrant LG, Chapman MA, Buckley DJ, Spendlove I, Robins RA and Armitage NC: Enhanced expression of the complement regulatory protein CD55 predicts a poor prognosis in colorectal cancer patients. Cancer Immunol Immunother. 52:638–642. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bulla R, Tripodo C, Rami D, Ling GS, Agostinis C, Guarnotta C, Zorzet S, Durigutto P, Botto M and Tedesco F: C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 7:103462016. View Article : Google Scholar : PubMed/NCBI | |
Corrales L, Ajona D, Rafail S, Lasarte JJ, Riezu-Boj JI, Lambris JD, Rouzaut A, Pajares MJ, Montuenga LM and Pio R: Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression. J Immunol. 189:4674–4683. 2012. View Article : Google Scholar : PubMed/NCBI | |
Seol HS, Lee SE, Song JS, Rhee JK, Singh SR, Chang S and Jang SJ: Complement proteins C7 and CFH control the stemness of liver cancer cells via LSF-1. Cancer Lett. 372:24–35. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zha H, Wang X, Zhu Y, Chen D, Han X, Yang F, Gao J, Hu C, Shu C, Feng Y, et al: Intracellular activation of complement C3 leads to PD-L1 antibody treatment resistance by modulating tumor-associated macrophages. Cancer Immunol Res. 7:193–207. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jackson SP, Darbousset R and Schoenwaelder SM: Thromboinflammation: Challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 133:906–918. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O'Brien SA, He Y, Wang L, Zhang Q, Kim A, et al: Single-cell analyses inform mechanisms of Myeloid-targeted therapies in colon cancer. Cell. 181:442–459.e29. 2020. View Article : Google Scholar : PubMed/NCBI | |
Deng H, Chen Y, Liu Y, Liu L and Xu R: Complement C1QC as a potential prognostic marker and therapeutic target in colon carcinoma based on single-cell RNA sequencing and immunohistochemical analysis. Bosn J Basic Med Sci. 22:912–922. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, You K, You Y, Li Q, Feng G, Ni J, Cao X, Zhang X, Wang Y, Bao W, et al: Paeoniflorin prevents aberrant proliferation and differentiation of intestinal stem cells by controlling C1q release from macrophages in chronic colitis. Pharmacol Res. 182:1063092022. View Article : Google Scholar : PubMed/NCBI | |
Pouw RB and Ricklin D: Tipping the balance: Intricate roles of the complement system in disease and therapy. Semin Immunopathol. 43:757–771. 2021. View Article : Google Scholar : PubMed/NCBI | |
Afshar-Kharghan V: The role of the complement system in cancer. J Clin Invest. 127:780–789. 2017. View Article : Google Scholar : PubMed/NCBI | |
Merle NS, Church SE, Fremeaux-Bacchi V and Roumenina LT: Complement system part I-Molecular mechanisms of activation and regulation. Front Immunol. 6:2622015. View Article : Google Scholar : PubMed/NCBI | |
Ling M and Murali M: Analysis of the complement system in the clinical immunology laboratory. Clin Lab Med. 39:579–590. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nesargikar PN, Spiller B and Chavez R: The complement system: History, pathways, cascade and inhibitors. Eur J Microbiol Immunol. 2:103–111. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hurler L, Toonen EJM, Kajdácsi E, van Bree B, Brandwijk RJMGE, de Bruin W, Lyons PA, Bergamaschi L; Cambridge Institute of Therapeutic Immunology and Infectious Disease-National Institute of Health Research (CITIID-NIHR) COVID BioResource Collaboration, ; Sinkovits G, et al: Distinction of early complement classical and lectin pathway activation via quantification of C1s/C1-INH and MASP-1/C1-INH complexes using novel ELISAs. Front Immunol. 13:10397652022. View Article : Google Scholar : PubMed/NCBI | |
Hallam TM, Sharp SJ, Andreadi A and Kavanagh D: Complement factor I: Regulatory nexus, driver of immunopathology, and therapeutic. Immunobiology. 228:1524102023. View Article : Google Scholar : PubMed/NCBI | |
Song WC: Complement regulatory proteins and autoimmunity. Autoimmunity. 39:403–410. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ghosh P, Sahoo R, Vaidya A, Chorev M and Halperin JA: Role of complement and complement regulatory proteins in the complications of diabetes. Endocr Rev. 6:272–288. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shah SC and Itzkowitz SH: Colorectal cancer in inflammatory bowel disease: Mechanisms and management. Gastroenterology. 162:715–730.e3. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wang J, Zhao J, Wang H, Chen J and Wu J: HMGA2 facilitates colorectal cancer progression via STAT3-mediated tumor-associated macrophage recruitment. Theranostics. 12:963–975. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Wang S, Qi Y, Chen L, Frank JA, Yang XH, Zhang Z, Shi X and Luo J: Role of MCP-1 in alcohol-induced aggressiveness of colorectal cancer cells. Mol Carcinog. 55:1002–1011. 2016. View Article : Google Scholar : PubMed/NCBI | |
Habermann JK, Roblick UJ, Luke BT, Prieto DA, Finlay WJ, Podust VN, Roman JM, Oevermann E, Schiedeck T, Homann N, et al: Increased serum levels of complement C3a anaphylatoxin indicate the presence of colorectal tumors. Gastroenterology. 131:1020–1029. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nitta H, Wada Y, Kawano Y, Murakami Y, Irie A, Taniguchi K, Kikuchi K, Yamada G, Suzuki K, Honda J, et al: Enhancement of human cancer cell motility and invasiveness by anaphylatoxin C5a via aberrantly expressed C5a receptor (CD88). Clin Cancer Res. 19:2004–2013. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mehrabani D, Shamsdin SA, Dehghan A and Safarpour A: Clinical significance of serum vascular endothelial growth factor and complement 3a levels in patients with colorectal cancer in southern Iran. Asian Pac J Cancer Prev. 15:9713–9717. 2014. View Article : Google Scholar : PubMed/NCBI | |
Krieg C, Weber LM, Fosso B, Marzano M, Hardiman G, Olcina MM, Domingo E, El Aidy S, Mallah K, Robinson MD and Guglietta S: Complement downregulation promotes an inflammatory signature that renders colorectal cancer susceptible to immunotherapy. J Immunother Cancer. 10:e0047172022. View Article : Google Scholar : PubMed/NCBI | |
Markiewski MM, DeAngelis RA, Benencia F, Ricklin-Lichtsteiner SK, Koutoulaki A, Gerard C, Coukos G and Lambris JD: Modulation of the antitumor immune response by complement. Nat Immunol. 9:1225–1235. 2008. View Article : Google Scholar : PubMed/NCBI | |
Piao C, Zhang WM, Li TT, Zhang CC, Qiu S, Liu Y, Liu S, Jin M, Jia LX, Song WC and Du J: Complement 5a stimulates macrophage polarization and contributes to tumor metastases of colon cancer. Exp Cell Res. 366:127–138. 2018. View Article : Google Scholar : PubMed/NCBI | |
Piao C, Cai L, Qiu S, Jia L, Song W and Du J: Complement 5a enhances hepatic metastases of colon cancer via monocyte chemoattractant protein-1-mediated inflammatory cell infiltration. J Biol Chem. 290:10667–10676. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Li M, Ran L, Li X, Sun X and Yin T: C5aR1 promotes the progression of colorectal cancer by EMT and activating Wnt/β-catenin pathway. Clin Transl Oncol. 25:440–446. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu XL, Zhang L and Qi SX: Association of complement components with risk of colorectal cancer: A systematic review and meta-analysis. World J Gastrointest Oncol. 16:2168–2180. 2024. View Article : Google Scholar : PubMed/NCBI | |
Urbiola-Salvador V, Jabłońska A, Miroszewska D, Kamysz W, Duzowska K, Drężek-Chyła K, Baber R, Thieme R, Gockel I, Zdrenka M, et al: Mass spectrometry proteomics characterization of plasma biomarkers for colorectal cancer associated with inflammation. Biomark Insights. 19:117727192412577392024. View Article : Google Scholar : PubMed/NCBI | |
Talaat IM, Elemam NM and Saber-Ayad M: Complement system: An immunotherapy target in colorectal cancer. Front Immunol. 13:8109932022. View Article : Google Scholar : PubMed/NCBI | |
Lin F, Spencer D, Hatala DA, Levine AD and Medof ME: Decay-accelerating factor deficiency increases susceptibility to dextran sulfate sodium-induced colitis: Role for complement in inflammatory bowel disease. J Immunol. 172:3836–3841. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Fu N, Yang Z, Li A, Wu H, Jin Y, Song Q, Ji S, Xu H, Zhang Z and Zhang X: The genetic and epigenetic regulation of CD55 and its pathway analysis in colon cancer. Front Immunol. 13:9471362022. View Article : Google Scholar : PubMed/NCBI | |
Dho SH, Cho EH, Lee JY, Lee SY, Jung SH, Kim LK and Lim JC: A novel therapeutic anti-CD55 monoclonal antibody inhibits the proliferation and metastasis of colorectal cancer cells. Oncol Rep. 42:2686–2693. 2019.PubMed/NCBI | |
Nakagawa M, Mizuno M, Kawada M, Uesu T, Nasu J, Takeuchi K, Okada H, Endo Y, Fujita T and Tsuji T: Polymorphic expression of decay-accelerating factor in human colorectal cancer. J Gastroenterol Hepatol. 16:184–189. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bao D, Zhang C, Li L, Wang H, Li Q, Ni L, Lin Y, Huang R, Yang Z, Zhang Y and Hu Y: Integrative analysis of complement system to prognosis and immune infiltrating in colon cancer and gastric cancer. Front Oncol. 10:5532972020. View Article : Google Scholar : PubMed/NCBI | |
Tang G, Pan L, Wang Z, Zhu H, Yang Y, Wang Z, Yue H, Shi Y, Wu D, Jiang Z and Jiang D: Knockdown of membrane-bound complement regulatory proteins suppresses colon cancer growth in mice through inducing tumor cell apoptosis. Int Immunopharmacol. 114:1094502023. View Article : Google Scholar : PubMed/NCBI | |
Du YJ, Jiang Y, Hou YM and Shi YB: Complement factor I knockdown inhibits colon cancer development by affecting Wnt/β-catenin/c-Myc signaling pathway and glycolysis. World J Gastrointest Oncol. 16:2646–2662. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wilczek E, Rzepko R, Nowis D, Legat M, Golab J, Glab M, Gorlewicz A, Konopacki F, Mazurkiewicz M, Sladowski D, et al: The possible role of factor H in colon cancer resistance to complement attack. Int J Cancer. 122:2030–2037. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fishelson Z and Kirschfink M: Complement C5b-9 and cancer: Mechanisms of cell damage, cancer counteractions, and approaches for intervention. Front Immunol. 10:7522019. View Article : Google Scholar : PubMed/NCBI | |
Reis ES, Mastellos DC, Ricklin D, Mantovani A and Lambris JD: Complement in cancer: Untangling an intricate relationship. Nat Rev Immunol. 18:5–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Watson NF, Durrant LG, Madjd Z, Ellis IO, Scholefield JH and Spendlove I: Expression of the membrane complement regulatory protein CD59 (protectin) is associated with reduced survival in colorectal cancer patients. Cancer Immunol Immunother. 55:973–980. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bjørge L, Vedeler CA, Ulvestad E and Matre R: Expression and function of CD59 on colonic adenocarcinoma cells. Eur J Immunol. 24:1597–1603. 1994. View Article : Google Scholar : PubMed/NCBI | |
Ding P, Li L, Huang T, Yang C, Xu E, Wang N, Zhang L, Gu H, Yao X, Zhou X and Hu W: Complement component 6 deficiency increases susceptibility to dextran sulfate sodium-induced murine colitis. Immunobiology. 221:1293–1303. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vlaicu SI, Tatomir A, Rus V and Rus H: Role of C5b-9 and RGC-32 in cancer. Front Immunol. 10:10542019. View Article : Google Scholar : PubMed/NCBI | |
Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR and Jinga M: Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now? Int J Mol Sci. 22:102602021. View Article : Google Scholar : PubMed/NCBI | |
Towner LD, Wheat RA, Hughes TR and Morgan BP: Complement membrane attack and tumorigenesis: A systems biology approach. J Biol Chem. 291:14927–14938. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vlaicu SI, Tegla CA, Cudrici CD, Fosbrink M, Nguyen V, Azimzadeh P, Rus V, Chen H, Mircea PA, Shamsuddin A and Rus H: Epigenetic modifications induced by RGC-32 in colon cancer. Exp Mol Pathol. 88:67–76. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tian J, Xu C, Yang MH and Li ZG: Overexpression of response gene to complement-32 promotes cytoskeleton reorganization in SW480 cell line. Nan Fang Yi Ke Da Xue Xue Bao. 31:1179–1182. 2011.(In Chinese). PubMed/NCBI | |
Liszewski MK, Kolev M, Le Friec G, Leung M, Bertram PG, Fara AF, Subias M, Pickering MC, Drouet C, Meri S, et al: Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity. 39:1143–1157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ding P, Xu Y, Li L, Lv X, Li L, Chen J, Zhou D, Wang X, Wang Q, Zhang W, et al: Intracellular complement C5a/C5aR1 stabilizes β-catenin to promote colorectal tumorigenesis. Cell Rep. 39:1108512022. View Article : Google Scholar : PubMed/NCBI | |
Arbore G, West EE, Rahman J, Le Friec G, Niyonzima N, Pirooznia M, Tunc I, Pavlidis P, Powell N, Li Y, et al: Complement receptor CD46 co-stimulates optimal human CD8+ T cell effector function via fatty acid metabolism. Nat Commun. 9:41862018. View Article : Google Scholar : PubMed/NCBI | |
Tam JC, Bidgood SR, McEwan WA and James LC: Intracellular sensing of complement C3 activates cell autonomous immunity. Science. 345:12560702014. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Wang X: Tumor microenvironment-associated gene C3 can predict the prognosis of colorectal adenocarcinoma: A study based on TCGA. Clin Transl Oncol. 23:1923–1933. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nandagopal S, Li CG, Xu Y, Sodji QH, Graves EE and Giaccia AJ: C3aR signaling inhibits NK-cell infiltration into the tumor microenvironment in mouse models. Cancer Immunol Res. 10:245–258. 2022. View Article : Google Scholar : PubMed/NCBI | |
Arbore G, West EE, Spolski R, Robertson AAB, Klos A, Rheinheimer C, Dutow P, Woodruff TM, Yu ZX, O'Neill LA, et al: T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science. 352:aad12102016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang H and He YW: The complement receptors C3aR and C5aR are a new class of immune checkpoint receptor in cancer immunotherapy. Front Immunol. 10:15742019. View Article : Google Scholar : PubMed/NCBI | |
Medler TR, Murugan D, Horton W, Kumar S, Cotechini T, Forsyth AM, Leyshock P, Leitenberger JJ, Kulesz-Martin M, Margolin AA, et al: Complement C5a fosters squamous carcinogenesis and limits T cell response to chemotherapy. Cancer Cell. 34:561–578.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ghebrehiwet B, Hosszu KH and Peerschke EI: C1q as an autocrine and paracrine regulator of cellular functions. Mol Immunol. 84:26–33. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ghebrehiwet B, Kandov E, Kishore U and Peerschke EIB: Is the A-chain the engine that drives the diversity of C1q functions? Revisiting its unique structure. Front Immunol. 9:1622018. View Article : Google Scholar : PubMed/NCBI | |
Bossi F, Tripodo C, Rizzi L, Bulla R, Agostinis C, Guarnotta C, Munaut C, Baldassarre G, Papa G, Zorzet S, et al: C1q as a unique player in angiogenesis with therapeutic implication in wound healing. Proc Natl Acad Sci USA. 111:4209–4214. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen LH, Liu JF, Lu Y, He XY, Zhang C and Zhou HH: Complement C1q (C1qA, C1qB, and C1qC) may be a potential prognostic factor and an index of tumor microenvironment remodeling in osteosarcoma. Front Oncol. 11:6421442021. View Article : Google Scholar : PubMed/NCBI | |
Earley AM, Graves CL and Shiau CE: Critical role for a subset of intestinal macrophages in shaping gut microbiota in adult zebrafish. Cell Rep. 25:424–436. 2018. View Article : Google Scholar : PubMed/NCBI | |
Revel M, Sautès-Fridman C, Fridman WH and Roumenina LT: C1q+ macrophages: Passengers or drivers of cancer progression. Trends Cancer. 8:517–526. 2022. View Article : Google Scholar : PubMed/NCBI | |
Roumenina LT, Daugan MV, Noé R, Petitprez F, Vano YA, Sanchez-Salas R, Becht E, Meilleroux J, Clec'h BL, Giraldo NA, et al: Tumor cells hijack Macrophage-produced complement C1q to promote tumor growth. Cancer Immunol Res. 7:1091–1105. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, et al: The consensus molecular subtypes of colorectal cancer. Nat Med. 21:1350–1356. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S and Tabernero J: Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 17:79–92. 2017. View Article : Google Scholar : PubMed/NCBI | |
Downs-Canner S, Magge D, Ravindranathan R, O'Malley ME, Francis L, Liu Z, Sheng Guo Z, Obermajer N and Bartlett DL: Complement inhibition: A novel form of immunotherapy for colon cancer. Ann Surg Oncol. 23:655–662. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ding P, Li L, Li L, Lv X, Zhou D, Wang Q, Chen J, Yang C, Xu E, Dai W, et al: C5aR1 is a master regulator in colorectal tumorigenesis via immune modulation. Theranostics. 10:8619–8632. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zelek WM, Xie L, Morgan BP and Harris CL: Compendium of current complement therapeutics. Mol Immunol. 114:341–35. 20192 View Article : Google Scholar : PubMed/NCBI | |
Sheridan D, Yu ZX, Zhang Y, Patel R, Sun F, Lasaro MA, Bouchard K, Andrien B, Marozsan A, Wang Y and Tamburini P: Design and preclinical characterization of ALXN1210: A novel anti-C5 antibody with extended duration of action. PLoS One. 13:e01959092018. View Article : Google Scholar : PubMed/NCBI | |
van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V and Macleod MR: Can animal models of disease reliably inform human studies? PLoS Med. 7:e10002452010. View Article : Google Scholar : PubMed/NCBI | |
Horvath P, Aulner N, Bickle M, Davies AM, Nery ED, Ebner D, Montoya MC, Östling P, Pietiäinen V, Price LS, et al: Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov. 15:751–769. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gengenbacher N, Singhal M and Augustin HG: Preclinical mouse solid tumour models: Status quo, challenges and perspectives. Nat Rev Cancer. 17:751–765. 2017. View Article : Google Scholar : PubMed/NCBI |