
Heat shock protein 22: A new direction for cardiovascular disease (Review)
- Authors:
- Yi Chen
- Meng Li
- Yanqing Wu
-
Affiliations: Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: January 27, 2025 https://doi.org/10.3892/mmr.2025.13447
- Article Number: 82
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G and Chen J: Heat shock proteins: Cellular and molecular mechanisms in the central nervous system. Prog Neurobiol. 92:184–211. 2010. View Article : Google Scholar : PubMed/NCBI | |
Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, et al: The growing world of small heat shock proteins: From structure to functions. Cell Stress Chaperones. 22:601–611. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yun CW, Kim HJ, Lim JH and Lee SH: Heat shock proteins: Agents of cancer development and therapeutic targets in anti-cancer therapy. Cells. 9:602019. View Article : Google Scholar : PubMed/NCBI | |
Benjamin IJ and McMillan DR: Stress (heat shock) proteins: Molecular chaperones in cardiovascular biology and disease. Circ Res. 83:117–132. 1998. View Article : Google Scholar : PubMed/NCBI | |
Deniset JF and Pierce GN: Heat shock proteins: Mediators of atherosclerotic development. Curr Drug Targets. 16:816–826. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nayak Rao S: The role of heat shock proteins in kidney disease. J Transl Int Med. 4:114–117. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Metzler B, Jahangiri M and Mandal K: Molecular chaperones and heat shock proteins in atherosclerosis. Am J Physiol Heart Circ Physiol. 302:H506–H514. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kappé G, Franck E, Verschuure P, Boelens WC, Leunissen JA and de Jong WW: The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones. 8:53–61. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kappé G, Verschuure P, Philipsen RL, Staalduinen AA, Van de Boogaart P, Boelens WC and De Jong WW: Characterization of two novel human small heat shock proteins: Protein kinase-related HspB8 and testis-specific HspB9. Biochim Biophys Acta. 1520:1–6. 2001. View Article : Google Scholar : PubMed/NCBI | |
Morrow G, Hightower LE and Tanguay RM: Small heat shock proteins: Big folding machines. Cell Stress Chaperones. 20:207–212. 2015. View Article : Google Scholar : PubMed/NCBI | |
Haslbeck M, Franzmann T, Weinfurtner D and Buchner J: Some like it hot: The structure and function of small heat-shock proteins. Nat Struct Mol Biol. 12:842–846. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vos MJ, Hageman J, Carra S and Kampinga HH: Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry. 47:7001–7011. 2008. View Article : Google Scholar : PubMed/NCBI | |
Smith CC, Yu YX, Kulka M and Aurelian L: A novel human gene similar to the protein kinase (PK) coding domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) codes for a serine-threonine PK and is expressed in melanoma cells. J Biol Chem. 275:25690–25699. 2000. View Article : Google Scholar : PubMed/NCBI | |
Benndorf R, Sun X, Gilmont RR, Biederman KJ, Molloy MP, Goodmurphy CW, Cheng H, Andrews PC and Welsh MJ: HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 ((3D)HSP27). J Biol Chem. 276:26753–26761. 2001. View Article : Google Scholar : PubMed/NCBI | |
Li XS, Xu Q, Fu XY and Luo WS: Heat shock protein 22 overexpression is associated with the progression and prognosis in gastric cancer. J Cancer Res Clin Oncol. 140:1305–1313. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Fontaine JM, Bartl I, Behnam B, Welsh MJ and Benndorf R: Induction of Hsp22 (HspB8) by estrogen and the metalloestrogen cadmium in estrogen receptor-positive breast cancer cells. Cell Stress Chaperones. 12:307–319. 2007. View Article : Google Scholar : PubMed/NCBI | |
Suzuki M, Matsushima-Nishiwaki R, Kuroyanagi G, Suzuki N, Takamatsu R, Furui T, Yoshimi N, Kozawa O and Morishige K: Regulation by heat shock protein 22 (HSPB8) of transforming growth factor-α-induced ovary cancer cell migration. Arch Biochem Biophys. 571:40–49. 2015. View Article : Google Scholar : PubMed/NCBI | |
Matsushima-Nishiwaki R, Toyoda H, Takamatsu R, Yasuda E, Okuda S, Maeda A, Kaneoka Y, Yoshimi N, Kumada T and Kozawa O: Heat shock protein 22 (HSPB8) reduces the migration of hepatocellular carcinoma cells through the suppression of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Biochim Biophys Acta Mol Basis Dis. 1863:1629–1639. 2017. View Article : Google Scholar : PubMed/NCBI | |
Modem S, Chinnakannu K, Bai U, Reddy GP and Reddy TR: Hsp22 (HspB8/H11) knockdown induces Sam68 expression and stimulates proliferation of glioblastoma cells. J Cell Physiol. 226:2747–2751. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Yin W, Ma L, Liu Z and Li Q: HSPB8 facilitates prostate cancer progression via activating the JAK/STAT3 signaling pathway. Biochem Cell Biol. 101:1–11. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cristofani R, Piccolella M, Montagnani Marelli M, Tedesco B, Poletti A and Moretti RM: HSPB8 counteracts tumor activity of BRAF- and NRAS-mutant melanoma cells by modulation of RAS-prenylation and autophagy. Cell Death Dis. 13:9732022. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Ma S, Ye Z, Zheng Y, Zheng Z, Liu X and Zhou X: Oncogenic DNA methyltransferase 1 activates the PI3K/AKT/mTOR signalling by blocking the binding of HSPB8 and BAG3 in melanoma. Epigenetics. 18:22396072023. View Article : Google Scholar : PubMed/NCBI | |
Chowdary TK, Raman B, Ramakrishna T and Rao CM: Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J. 381((Pt 2)): 379–387. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cristofani R, Rusmini P, Galbiati M, Cicardi ME, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Messi E, Piccolella M, et al: The regulation of the small heat shock protein B8 in misfolding protein diseases causing motoneuronal and muscle cell death. Front Neurosci. 13:7962019. View Article : Google Scholar : PubMed/NCBI | |
Rusmini P, Cristofani R, Galbiati M, Cicardi ME, Meroni M, Ferrari V, Vezzoli G, Tedesco B, Messi E, Piccolella M, et al: The role of the heat shock protein B8 (HSPB8) in motoneuron diseases. Front Mol Neurosci. 10:1762017. View Article : Google Scholar : PubMed/NCBI | |
Bouhy D, Juneja M, Katona I, Holmgren A, Asselbergh B, De Winter V, Hochepied T, Goossens S, Haigh JJ, Libert C, et al: A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8. Acta Neuropathol. 135:131–148. 2018. View Article : Google Scholar : PubMed/NCBI | |
Depre C, Kim SJ, John AS, Huang Y, Rimoldi OE, Pepper JR, Dreyfus GD, Gaussin V, Pennell DJ, Vatner DE, et al: Program of cell survival underlying human and experimental hibernating myocardium. Circ Res. 95:433–440. 2004. View Article : Google Scholar : PubMed/NCBI | |
Depre C, Tomlinson JE, Kudej RK, Gaussin V, Thompson E, Kim SJ, Vatner DE, Topper JN and Vatner SF: Gene program for cardiac cell survival induced by transient ischemia in conscious pigs. Proc Natl Acad Sci USA. 98:9336–9341. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hase M, Depre C, Vatner SF and Sadoshima J: H11 has dose-dependent and dual hypertrophic and proapoptotic functions in cardiac myocytes. Biochem J. 388:475–483. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Lizano P, Zhao X, Sui X, Dhar SK, Shen YT, Vatner DE, Vatner SF and Depre C: Preemptive conditioning of the swine heart by H11 kinase/Hsp22 provides cardiac protection through inducible nitric oxide synthase. Am J Physiol Heart Circ Physiol. 300:H1303–H1310. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sui X, Li D, Qiu H, Gaussin V and Depre C: Activation of the bone morphogenetic protein receptor by H11kinase/Hsp22 promotes cardiac cell growth and survival. Circ Res. 104:887–895. 2009. View Article : Google Scholar : PubMed/NCBI | |
Laure L, Long R, Lizano P, Zini R, Berdeaux A, Depre C and Morin D: Cardiac H11 kinase/Hsp22 stimulates oxidative phosphorylation and modulates mitochondrial reactive oxygen species production: Involvement of a nitric oxide-dependent mechanism. Free Radic Biol Med. 52:2168–2176. 2012. View Article : Google Scholar : PubMed/NCBI | |
Depre C, Wang L, Sui X, Qiu H, Hong C, Hedhli N, Ginion A, Shah A, Pelat M, Bertrand L, et al: H11 kinase prevents myocardial infarction by preemptive preconditioning of the heart. Circ Res. 98:280–288. 2006. View Article : Google Scholar : PubMed/NCBI | |
Qiu H, Lizano P, Laure L, Sui X, Rashed E, Park JY, Hong C, Gao S, Holle E, Morin D, et al: H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload. Circulation. 124:406–415. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Sun X, Shi X, Lai L, Wang C, Xie M, Qin G and Qiu H: Hsp22 deficiency induces age-dependent cardiac dilation and dysfunction by impairing autophagy, metabolism, and oxidative response. Antioxidants (Basel). 10:15502021. View Article : Google Scholar : PubMed/NCBI | |
Gober MD, Smith CC, Ueda K, Toretsky JA and Aurelian L: Forced expression of the H11 heat shock protein can be regulated by DNA methylation and trigger apoptosis in human cells. J Biol Chem. 278:37600–37609. 2003. View Article : Google Scholar : PubMed/NCBI | |
Verschuure P, Tatard C, Boelens WC, Grongnet JF and David JC: Expression of small heat shock proteins HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal developing pig. Eur J Cell Biol. 82:523–530. 2003. View Article : Google Scholar : PubMed/NCBI | |
Taylor RP and Benjamin IJ: Small heat shock proteins: A new classification scheme in mammals. J Mol Cell Cardiol. 38:433–444. 2005. View Article : Google Scholar : PubMed/NCBI | |
Knowlton AA and Sun L: Heat-shock factor-1, steroid hormones, and regulation of heat-shock protein expression in the heart. Am J Physiol Heart Circ Physiol. 280:H455–H464. 2001. View Article : Google Scholar : PubMed/NCBI | |
Eriksson M, Jokinen E, Sistonen L and Leppä S: Heat shock factor 2 is activated during mouse heart development. Int J Dev Biol. 44:471–477. 2000.PubMed/NCBI | |
Voellmy R: On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones. 9:122–133. 2004. View Article : Google Scholar : PubMed/NCBI | |
Morimoto RI: Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22:1427–1438. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lizano P, Rashed E, Kang H, Dai H, Sui X, Yan L, Qiu H and Depre C: The valosin-containing protein promotes cardiac survival through the inducible isoform of nitric oxide synthase. Cardiovasc Res. 99:685–693. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI | |
D'Autréaux B and Toledano MB: ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 8:813–824. 2007. View Article : Google Scholar : PubMed/NCBI | |
Prasad S, Gupta SC and Tyagi AK: Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 387:95–105. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheung EC and Vousden KH: The role of ROS in tumour development and progression. Nat Rev Cancer. 22:280–297. 2022. View Article : Google Scholar : PubMed/NCBI | |
Morin D, Long R, Panel M, Laure L, Taranu A, Gueguen C, Pons S, Leoni V, Caccia C, Vatner SF, et al: Hsp22 overexpression induces myocardial hypertrophy, senescence and reduced life span through enhanced oxidative stress. Free Radic Biol Med. 137:194–200. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bou-Teen D, Kaludercic N, Weissman D, Turan B, Maack C, Di Lisa F and Ruiz-Meana M: Mitochondrial ROS and mitochondria-targeted antioxidants in the aged heart. Free Radic Biol Med. 167:109–124. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Hu LL, Liu L, Yu LL, Li JP, Rao JA, Zhu LJ, Bao HH and Cheng XS: Hsp22 ameliorates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidative stress, and apoptosis. Bioengineered. 12:12544–12554. 2021. View Article : Google Scholar : PubMed/NCBI | |
Boulgakoff L, D'Amato G and Miquerol L: Molecular regulation of cardiac conduction system development. Curr Cardiol Rep. 26:943–952. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Yao S, Yang H, Liu S and Wang Y: Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023. View Article : Google Scholar : PubMed/NCBI | |
Miller DR and Thorburn A: Autophagy and organelle homeostasis in cancer. Dev Cell. 56:906–918. 2021. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI | |
Tedesco B, Vendredy L, Adriaenssens E, Cozzi M, Asselbergh B, Crippa V, Cristofani R, Rusmini P, Ferrari V, Casarotto E, et al: HSPB8 frameshift mutant aggregates weaken chaperone-assisted selective autophagy in neuromyopathies. Autophagy. 19:2217–2239. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK and Sadoshima J: Aging and autophagy in the heart. Circ Res. 118:1563–1576. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sciarretta S, Maejima Y, Zablocki D and Sadoshima J: The role of autophagy in the heart. Annu Rev Physiol. 80:1–26. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dewanjee S, Vallamkondu J, Kalra RS, John A, Reddy PH and Kandimalla R: Autophagy in the diabetic heart: A potential pharmacotherapeutic target in diabetic cardiomyopathy. Ageing Res Rev. 68:1013382021. View Article : Google Scholar : PubMed/NCBI | |
Rabinovich-Nikitin I, Kirshenbaum E and Kirshenbaum LA: Autophagy, clock genes, and cardiovascular disease. Can J Cardiol. 39:1772–1780. 2023. View Article : Google Scholar : PubMed/NCBI | |
Titus AS, Sung EA, Zablocki D and Sadoshima J: Mitophagy for cardioprotection. Basic Res Cardiol. 118:422023. View Article : Google Scholar : PubMed/NCBI | |
Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK, et al: Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol. 20:143–148. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ulbricht A, Eppler FJ, Tapia VE, van der Ven PF, Hampe N, Hersch N, Vakeel P, Stadel D, Haas A, Saftig P, et al: Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr Biol. 23:430–435. 2013. View Article : Google Scholar : PubMed/NCBI | |
Carra S, Seguin SJ and Landry J: HspB8 and Bag3: A new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy. 4:237–239. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liang Z, Zhang S, Zou Z, Li J, Wu R, Xia L, Shi G, Cai J, Tang J and Jian J: Functional characterization of BAG3 in orange-spotted grouper (Epinephelus coioides) during viral infection. Fish Shellfish Immunol. 122:465–475. 2022. View Article : Google Scholar : PubMed/NCBI | |
Peng S, Yu Y, Li J, Jiang D, Xu G, Wu L and Hu J: Hsp22 pretreatment protects against LPS-induced hippocampal injury by alleviating neuroinflammation and apoptosis by regulating the NLRP3/Caspase1/IL-1β signaling pathway in mice. Aging (Albany NY). 15:1977–2004. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lan Y, Wang Y, Huang K and Zeng Q: Heat shock protein 22 attenuates doxorubicin-induced cardiotoxicity via regulating inflammation and apoptosis. Front Pharmacol. 11:2572020. View Article : Google Scholar : PubMed/NCBI | |
Depre C, Hase M, Gaussin V, Zajac A, Wang L, Hittinger L, Ghaleh B, Yu X, Kudej RK, Wagner T, et al: H11 kinase is a novel mediator of myocardial hypertrophy in vivo. Circ Res. 91:1007–1014. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rashed E, Lizano P, Dai H, Thomas A, Suzuki CK, Depre C and Qiu H: Heat shock protein 22 (Hsp22) regulates oxidative phosphorylation upon its mitochondrial translocation with the inducible nitric oxide synthase in mammalian heart. PLoS One. 10:e01195372015. View Article : Google Scholar : PubMed/NCBI | |
Bolli R: Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: An overview of a decade of research. J Mol Cell Cardiol. 33:1897–1918. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yamagami K, Yamamoto Y, Ishikawa Y, Yonezawa K, Toyokuni S and Yamaoka Y: Effects of geranyl-geranyl-acetone administration before heat shock preconditioning for conferring tolerance against ischemia-reperfusion injury in rat livers. J Lab Clin Med. 135:465–475. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ooie T, Kajimoto M, Takahashi N, Shinohara T, Taniguchi Y, Kouno H, Wakisaka O, Yoshimatsu H and Saikawa T: Effects of insulin resistance on geranylgeranylacetone-induced expression of heat shock protein 72 and cardioprotection in high-fat diet rats. Life Sci. 77:869–881. 2005. View Article : Google Scholar : PubMed/NCBI | |
He D, Song X and Li L: Geranylgeranylacetone protects against cerebral ischemia and reperfusion injury: HSP90 and eNOS phosphorylation involved. Brain Res. 1599:150–157. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sysa-Shah P, Xu Y, Guo X, Pin S, Bedja D, Bartock R, Tsao A, Hsieh A, Wolin MS, Moens A, et al: Geranylgeranylacetone blocks doxorubicin-induced cardiac toxicity and reduces cancer cell growth and invasion through RHO pathway inhibition. Mol Cancer Ther. 13:1717–1728. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brundel BJ, Henning RH, Ke L, van Gelder IC, Crijns HJ and Kampinga HH: Heat shock protein upregulation protects against pacing-induced myolysis in HL-1 atrial myocytes and in human atrial fibrillation. J Mol Cell Cardiol. 41:555–562. 2006. View Article : Google Scholar : PubMed/NCBI | |
Brundel BJ, Shiroshita-Takeshita A, Qi X, Yeh YH, Chartier D, van Gelder IC, Henning RH, Kampinga HH and Nattel S: Induction of heat shock response protects the heart against atrial fibrillation. Circ Res. 99:1394–1402. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sakabe M, Shiroshita-Takeshita A, Maguy A, Brundel BJ, Fujiki A, Inoue H and Nattel S: Effects of a heat shock protein inducer on the atrial fibrillation substrate caused by acute atrial ischaemia. Cardiovasc Res. 78:63–70. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Ke L, Mackovicova K, Van Der Want JJ, Sibon OC, Tanguay RM, Morrow G, Henning RH, Kampinga HH and Brundel BJ: Effects of different small HSPB members on contractile dysfunction and structural changes in a Drosophila melanogaster model for atrial fibrillation. J Mol Cell Cardiol. 51:381–389. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chang SL, Chen YC, Hsu CP, Kao YH, Lin YK, Lai YJ, Yeh HI, Higa S, Chen SA and Chen YJ: Heat shock protein inducer modifies arrhythmogenic substrate and inhibits atrial fibrillation in the failing heart. Int J Cardiol. 168:4019–4026. 2013. View Article : Google Scholar : PubMed/NCBI | |
van Marion DM, Hu X, Zhang D, Hoogstra-Berends F, Seerden JG, Loen L, Heeres A, Steen H, Henning RH and Brundel BJ: Screening of novel HSP-inducing compounds to conserve cardiomyocyte function in experimental atrial fibrillation. Drug Des Devel Ther. 13:345–364. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Li J, van Marion DMS, Zhang D and Brundel BJJM: Heat shock protein inducer GGA*-59 reverses contractile and structural remodeling via restoration of the microtubule network in experimental atrial fibrillation. J Mol Cell Cardiol. 134:86–97. 2019. View Article : Google Scholar : PubMed/NCBI | |
van Marion DMS, Dorsch L, Hoogstra-Berends F, Kakuchaya T, Bockeria L, de Groot NMS and Brundel BJJM: Oral geranylgeranylacetone treatment increases heat shock protein expression in human atrial tissue. Heart Rhythm. 17:115–122. 2020. View Article : Google Scholar : PubMed/NCBI | |
Waddingham MT, Sequeira V, Kuster DWD, Dal Canto E, Handoko ML, de Man FS, da Silva Gonçalves Bós D, Ottenheijm CA, Shen S, van der Pijl RJ, et al: Geranylgeranylacetone reduces cardiomyocyte stiffness and attenuates diastolic dysfunction in a rat model of cardiometabolic syndrome. Physiol Rep. 11:e157882023. View Article : Google Scholar : PubMed/NCBI | |
Sanbe A, Daicho T, Mizutani R, Endo T, Miyauchi N, Yamauchi J, Tanonaka K, Glabe C and Tanoue A: Protective effect of geranylgeranylacetone via enhancement of HSPB8 induction in desmin-related cardiomyopathy. PLoS One. 4:e53512009. View Article : Google Scholar : PubMed/NCBI | |
Marunouchi T, Inomata S, Sanbe A, Takagi N and Tanonaka K: Protective effect of geranylgeranylacetone via enhanced induction of HSPB1 and HSPB8 in mitochondria of the failing heart following myocardial infarction in rats. Eur J Pharmacol. 730:140–147. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gong R, Li XY, Chen HJ, Xu CC, Fang HY, Xiang J and Wu YQ: Role of heat shock protein 22 in the protective effect of geranylgeranylacetone in response to oxidized-LDL. Drug Des Devel Ther. 13:2619–2632. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang B, Liu Y, Liang P, Li Y, Liu Z, Tong Z, Lv Q, Liu M and Xiao X: MicroRNA-126a-5p enhances myocardial ischemia-reperfusion injury through suppressing Hspb8 expression. Oncotarget. 8:94172–94187. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ren AJ, Chen C, Zhang S, Liu M, Wei C, Wang K, Ma X, Song Y, Wang R, Zhang H, et al: Zbtb20 deficiency causes cardiac contractile dysfunction in mice. FASEB J. 34:13862–13876. 2020. View Article : Google Scholar : PubMed/NCBI | |
Martin TG, Delligatti CE, Muntu NA, Stachowski-Doll MJ and Kirk JA: Pharmacological inhibition of BAG3-HSP70 with the proposed cancer therapeutic JG-98 is toxic for cardiomyocytes. J Cell Biochem. 123:128–141. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Ji M, Jing H and Lin H: DUSP12 ameliorates myocardial ischemia-reperfusion injury through HSPB8-induced mitophagy. J Biochem Mol Toxicol. 37:e233102023. View Article : Google Scholar : PubMed/NCBI | |
Vieri M, Geng H, Patterson JB, Panse J, Wilop S, Samali A, Chevet E and Kharabi Masouleh B: Deregulated expression of the HSP40 family members Auxilin-1 and −2 is indicative of proteostasis imbalance and predicts patient outcome in Ph(+) leukemia. Exp Hematol Oncol. 5:52015. View Article : Google Scholar : PubMed/NCBI | |
Criado-Marrero M, Gebru NT, Blazier DM, Gould LA, Baker JD, Beaulieu-Abdelahad D and Blair LJ: Hsp90 co-chaperones, FKBP52 and Aha1, promote tau pathogenesis in aged wild-type mice. Acta Neuropathol Commun. 9:652021. View Article : Google Scholar : PubMed/NCBI | |
Shilova V, Zatsepina O, Zakluta A, Karpov D, Chuvakova L, Garbuz D and Evgen'ev M: Age-dependent expression profiles of two adaptogenic systems and thermotolerance in Drosophila melanogaster. Cell Stress Chaperones. 25:305–315. 2020. View Article : Google Scholar : PubMed/NCBI |