
Modic changes: From potential molecular mechanisms to future research directions (Review)
- Authors:
- Weijian Zhu
- Zhou Yang
- Sirui Zhou
- Jinming Zhang
- Zhihao Xu
- Wei Xiong
- Ping Liu
-
Affiliations: Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China, Department of Orthopedics, Hongxin Harmony Hospital, Li Chuan, Hubei 445400 P.R. China, Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China, Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Department of Hepatobiliary Surgery, Huaqiao Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China, Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China - Published online on: February 6, 2025 https://doi.org/10.3892/mmr.2025.13455
- Article Number: 90
-
Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Modic MT, Steinberg PM, Ross JS, Masaryk TJ and Carter JR: Degenerative disk disease: Assessment of changes in vertebral body marrow with MR imaging. Radiology. 166((1 Pt 1)): 193–199. 1988. View Article : Google Scholar : PubMed/NCBI | |
Thompson KJ, Dagher AP, Eckel TS, Clark M and Reinig JW: Modic changes on MR images as studied with provocative diskography: Clinical relevance-a retrospective study of 2457 disks. Radiology. 250:849–855. 2009. View Article : Google Scholar : PubMed/NCBI | |
Carrino JA, Lurie JD, Tosteson AN, Tosteson TD, Carragee EJ, Kaiser J, Grove MR, Blood E, Pearson LH, Weinstein JN and Herzog R: Lumbar spine: Reliability of MR imaging findings. Radiology. 250:161–170. 2009. View Article : Google Scholar : PubMed/NCBI | |
Perilli E, Parkinson IH, Truong LH, Chong KC, Fazzalari NL and Osti OL: Modic (endplate) changes in the lumbar spine: Bone micro-architecture and remodelling. Eur Spine J. 24:1926–1934. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tarukado K, Ono T, Tono O, Tanaka H, Ikuta K, Harimaya K and Doi T: Does modic change progresss with age? Spine (Phila Pa 1976). 42:1805–1809. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brinjikji W, Diehn FE, Jarvik JG, Carr CM, Kallmes DF, Murad MH and Luetmer PH: MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: A systematic review and meta-analysis. AJNR Am J Neuroradiol. 36:2394–2399. 2015. View Article : Google Scholar : PubMed/NCBI | |
Heggli I, Laux CJ, Mengis T, Karol A, Cornaz F, Herger N, Aradi-Vegh B, Widmer J, Burkhard MD, Farshad-Amacker NA, et al: Modic type 2 changes are fibroinflammatory changes with complement system involvement adjacent to degenerated vertebral endplates. JOR Spine. 6:e12372022. View Article : Google Scholar : PubMed/NCBI | |
Heggli I, Epprecht S, Juengel A, Schuepbach R, Farshad-Amacker N, German C, Mengis T, Herger N, Straumann L, Baumgartner S, et al: Pro-fibrotic phenotype of bone marrow stromal cells in Modic type 1 changes. Eur Cell Mater. 41:648–667. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Zhu Z, Pan J, Feng Z, Lv X, Battié MC and Wang Y: Traumatic vertebra and endplate fractures promote adjacent disc degeneration: Evidence from a clinical MR follow-up study. Skeletal Radiol. 51:1017–1026. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dudli S, Heggli I, Laux CJ, Spirig JM, Wanivenhaus F, Betz M, Germann C, Farshad-Amacker NA, Herger N, Mengis T, et al: Role of C-reactive protein in the bone marrow of Modic type 1 changes. J Orthop Res. 41:1115–1122. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dudli S, Liebenberg E, Magnitsky S, Miller S, Demir-Deviren S and Lotz JC: Propionibacterium acnes infected intervertebral discs cause vertebral bone marrow lesions consistent with Modic changes. J Orthop Res. 34:1447–1455. 2016. View Article : Google Scholar : PubMed/NCBI | |
Biczo A, Szita J, McCall I and Varga PP; Genodisc Consortium; Lazary A, : Association of vitamin D receptor gene polymorphisms with disc degeneration. Eur Spine J. 29:596–604. 2020. View Article : Google Scholar : PubMed/NCBI | |
Eksi MS, Kara M, Ozcan-Eksi EE, Aytar MH, Güngör A, Özgen S and Pamir MN: Is diabetes mellitus a risk factor for modic changes?: A novel model to understand the association between intervertebral disc degeneration and end-plate changes. J Orthop Sci. 25:571–575. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schmid G, Witteler A, Willburger R, Kuhnen C, Jergas M and Koester O: Lumbar disk herniation: Correlation of histologic findings with marrow signal intensity changes in vertebral endplates at MR imaging. Radiology. 231:352–358. 2004. View Article : Google Scholar : PubMed/NCBI | |
Roberts S, Evans H, Trivedi J and Menage J: Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am. 88 (Suppl 2):S10–S14. 2006. View Article : Google Scholar | |
Feng P, Che Y, Gao C, Zhu L, Gao J and Vo NV: Immune exposure: How macrophages interact with the nucleus pulposus. Front Immunol. 14:11557462023. View Article : Google Scholar : PubMed/NCBI | |
Adams MA, Freeman BJ, Morrison HP, Nelson IW and Dolan P: Mechanical initiation of intervertebral disc degeneration. Spine (Phila Pa 1976). 25:1625–1636. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ferguson SJ, Ito K and Nolte LP: Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech. 37:213–221. 2004. View Article : Google Scholar : PubMed/NCBI | |
Torkki M, Majuri ML, Wolff H, Koskelainen T, Haapea M, Niinimäki J, Alenius H, Lotz J and Karppinen J: Osteoclast activators are elevated in intervertebral disks with Modic changes among patients operated for herniated nucleus pulposus. Eur Spine J. 25:207–216. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dudli S, Ferguson SJ and Haschtmann D: Severity and pattern of post-traumatic intervertebral disc degeneration depend on the type of injury. Spine J. 14:1256–1264. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dudli S, Haschtmann D and Ferguson SJ: Fracture of the vertebral endplates, but not equienergetic impact load, promotes disc degeneration in vitro. J Orthop Res. 30:809–816. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jensen TS, Bendix T, Sorensen JS, Manniche C, Korsholm L and Kjaer P: Characteristics and natural course of vertebral endplate signal (Modic) changes in the Danish general population. BMC Musculoskelet Disord. 10:812009. View Article : Google Scholar : PubMed/NCBI | |
Kerttula L, Luoma K, Vehmas T, Gronblad M and Kaapa E: Modic type I change may predict rapid progressive, deforming disc degeneration: A prospective 1-year follow-up study. Eur Spine J. 21:1135–1142. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dudli S, Sing DC, Hu SS, Berven SH, Burch S, Deviren V, Cheng I, Tay BKB, Alamin TF, Ith MAM, et al: Issls prize in basic science 2017: Intervertebral disc/bone marrow cross-talk with Modic changes. Eur Spine J. 26:1362–1373. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dudli S, Karol A, Giudici L, Heggli I, Laux CJ, Spirig JM, Wanivenhaus F, Betz M, Germann C, Farshad-Amacker N, et al: CD90-positive stromal cells associate with inflammatory and fibrotic changes in modic changes. Osteoarthr Cartil Open. 4:1002872022. View Article : Google Scholar : PubMed/NCBI | |
Baum T, Yap SP, Karampinos DC, Nardo L, Kuo D, Burghardt AJ, Masharani UB, Schwartz AV, Li X and Link TM: Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging. 35:117–124. 2012. View Article : Google Scholar : PubMed/NCBI | |
Thomas GP, Hemmrich K, Abberton KM, McCombe D, Penington AJ, Thompson EW and Morrison WA: Zymosan-induced inflammation stimulates neo-adipogenesis. Int J Obes (Lond). 32:239–248. 2008. View Article : Google Scholar : PubMed/NCBI | |
Monden M, Koyama H, Otsuka Y, Morioka T, Mori K, Shoji T, Mima Y, Motoyama K, Fukumoto S, Shioi A, et al: Receptor for advanced glycation end products regulates adipocyte hypertrophy and insulin sensitivity in mice: Involvement of Toll-like receptor 2. Diabetes. 62:478–489. 2013. View Article : Google Scholar : PubMed/NCBI | |
Haapasalo K and Meri S: Regulation of the complement system by pentraxins. Front Immunol. 10:17502019. View Article : Google Scholar : PubMed/NCBI | |
Sjöberg A, Onnerfjord P Mörgelin M, Heinegård D, Heinegård D and Blom AM: The extracellular matrix and inflammation: Fibromodulin activates the classical pathway of complement by directly binding C1q. J Biol Chem. 280:32301–23208. 2005. View Article : Google Scholar : PubMed/NCBI | |
Webster GF, Leyden JJ and Nilsson UR: Complement activation in acne vulgaris: Consumption of complement by comedones. Infect Immun. 26:183–186. 1979. View Article : Google Scholar : PubMed/NCBI | |
Piccinini AM and Midwood KS: DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010:6723952010. View Article : Google Scholar : PubMed/NCBI | |
Ignatius A, Schoengraf P, Kreja L, Liedert A, Recknagel S, Kandert S, Brenner RE, Schneider M, Lambris JD and Huber-Lang M: Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1β. J Cell Biochem. 112:2594–2605. 2011. View Article : Google Scholar : PubMed/NCBI | |
Llorian-Salvador M, Byrne EM, Szczepan M, Little K, Chen M and Xu H: Complement activation contributes to subretinal fibrosis through the induction of epithelial-to-mesenchymal transition (EMT) in retinal pigment epithelial cells. J Neuroinflammation. 19:1822022. View Article : Google Scholar : PubMed/NCBI | |
Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, Chen Y, Zhang K, Ambati BK, Baffi JZ and Ambati J: Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci USA. 103:2328–2333. 2006. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K, Miyazaki T, Ohnari H, Takino T and Tomita K: Schmorl's nodes and low-back pain. Analysis of magnetic resonance imaging findings in symptomatic and asymptomatic individuals. Eur Spine J. 4:56–59. 1995. View Article : Google Scholar : PubMed/NCBI | |
Dudli S, Fields AJ, Samartzis D, Karppinen J and Lotz JC: Pathobiology of modic changes. Eur Spine J. 25:3723–3734. 2016. View Article : Google Scholar : PubMed/NCBI | |
Galán-Díez M and Kousteni S: A bone marrow niche-derived molecular switch between osteogenesis and hematopoiesis. Genes Dev. 32:324–326. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou BO, Yue R, Murphy MM, Peyer JG and Morrison SJ: Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 15:154–168. 2014. View Article : Google Scholar : PubMed/NCBI | |
Decker M, Martinez-Morentin L, Wang G, Lee Y, Liu Q, Leslie J and Ding L: Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nat Cell Biol. 19:677–688. 2017. View Article : Google Scholar : PubMed/NCBI | |
Papayannopoulos V: Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 18:134–147. 2018. View Article : Google Scholar : PubMed/NCBI | |
Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F and Daley GQ: Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 460:259–263. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wan Y, Chong LW and Evans RM: PPAR-gamma regulates osteoclastogenesis in mice. Nat Med. 13:1496–1503. 2007. View Article : Google Scholar : PubMed/NCBI | |
He N, Liu M and Wu Y: Adipose tissue and hematopoiesis: Friend or foe? J Clin Lab Anal. 37:e248722023. View Article : Google Scholar : PubMed/NCBI | |
Mattiucci D, Maurizi G, Izzi V, Cenci L, Ciarlantini M, Mancini S, Mensà E, Pascarella R, Vivarelli M, Olivieri A, et al: Bone marrow adipocytes support hematopoietic stem cell survival. J Cell Physiol. 233:1500–1511. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wilson A, Fu H, Schiffrin M, Winkler C, Koufany M, Jouzeau JY, Bonnet N, Gilardi F, Renevey F, Luther SA, et al: Lack of adipocytes alters hematopoiesis in lipodystrophic mice. Front Immunol. 9:25732018. View Article : Google Scholar : PubMed/NCBI | |
Kolaczkowska E and Kubes P: Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 13:159–175. 2013. View Article : Google Scholar : PubMed/NCBI | |
Borregaard N: Neutrophils, from marrow to microbes. Immunity. 33:657–670. 2010. View Article : Google Scholar : PubMed/NCBI | |
Heggli I, Mengis T, Laux CJ, Opitz L, Herger N, Menghini D, Schuepbach R, Farshad-Amacker NA, Brunner F, Fields AJ, et al: Low back pain patients with Modic type 1 changes exhibit distinct bacterial and non-bacterial subtypes. Osteoarthr Cartil Open. 6:1004342024. View Article : Google Scholar : PubMed/NCBI | |
Kawai T and Akira S: Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 34:637–650. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fournier BM and Parkos CA: The role of neutrophils during intestinal inflammation. Mucosal Immunol. 5:354–366. 2012. View Article : Google Scholar : PubMed/NCBI | |
Thålin C, Hisada Y, Lundström S, Mackman N and Wallén H: Neutrophil extracellular traps: Villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol. 39:1724–1738. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wang C, Zhao MH and Chen M: Neutrophil extracellular traps can activate alternative complement pathways. Clin Exp Immunol. 181:518–527. 2015. View Article : Google Scholar : PubMed/NCBI | |
Christoffersson G, Vagesjo E, Vandooren J, Lidén M, Massena S, Reinert RB, Brissova M, Powers AC, Opdenakker G and Phillipson M: VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood. 120:4653–4662. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Gilbert GE, Kokubo Y and Ohashi T: Role of the liver in regulating numbers of circulating neutrophils. Blood. 98:1226–1230. 2001. View Article : Google Scholar : PubMed/NCBI | |
Okabe Y and Medzhitov R: Tissue biology perspective on macrophages. Nat Immunol. 17:9–17. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Liang Y and Wang L: Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 13:8887132022. View Article : Google Scholar : PubMed/NCBI | |
Nakazawa KR, Walter BA, Laudier DM, Krishnamoorthy D, Mosley GE, Spiller KL and Iatridis JC: Accumulation and localization of macrophage phenotypes with human intervertebral disc degeneration. Spine J. 18:343–356. 2018. View Article : Google Scholar : PubMed/NCBI | |
Murai K, Sakai D, Nakamura Y, Nakai T, Igarashi T, Seo N, Murakami T, Kobayashi E and Mochida J: Primary immune system responders to nucleus pulposus cells: Evidence for immune response in disc herniation. Eur Cell Mater. 19:13–21. 2010. View Article : Google Scholar : PubMed/NCBI | |
Daneshvar A, Nemati P, Azadi A, Amid R and Kadkhodazadeh M: M2 macrophage-derived exosomes for bone regeneration: A systematic review. Arch Oral Biol. 166:1060342024. View Article : Google Scholar : PubMed/NCBI | |
Fan S, Zhang C, Sun X, Su C, Xue Y, Song X and Deng R: Metformin enhances osteogenic differentiation of BMSC by modulating macrophage M2 polarization. Sci Rep. 14:202672024. View Article : Google Scholar : PubMed/NCBI | |
Fang C, Zhong R, Lu S, Yu G, Liu Z, Yan C, Gao J, Tang Y, Wang Y, Zhao Q and Feng X: TREM2 promotes macrophage polarization from M1 to M2 and suppresses osteoarthritis through the NF-κB/CXCL3 axis. Int J Biol Sci. 20:1992–2007. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao M, Liu S, Guo J, Lu Y, Cheng J and Liu J: Macrophage-derived extracellular vesicles: Diverse mediators of pathology and therapeutics in multiple diseases. Cell Death Dis. 11:9242020. View Article : Google Scholar : PubMed/NCBI | |
Häusler KD, Horwood NJ, Chuman Y, Fisher JL, Ellis J, Martin TJ, Rubin JS and Gillespie MT: Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res. 19:1873–1881. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Qin J, Lan L, Li N, Wang C, He P, Liu F, Ni H and Wang Y: M-CSF cooperating with NFκB induces macrophage transformation from M1 to M2 by upregulating c-Jun. Cancer Biol Ther. 15:99–107. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, Kariya Y, Kato G, Tabata Y, Penninger JM, et al: Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 561:195–200. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z and Goodman SB: Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 196:80–89. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ni S, Ling Z, Wang X, Cao Y, Wu T, Deng R, Crane JL, Skolasky R, Demehri S, Zhen G, et al: Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nat Commun. 10:56432019. View Article : Google Scholar : PubMed/NCBI | |
Bachmeier BE, Nerlich AG, Weiler C, Paesold G, Jochum M and Boos N: Analysis of tissue distribution of TNF-alpha, TNF-alpha-receptors, and the activating TNF-alpha-converting enzyme suggests activation of the TNF-alpha system in the aging intervertebral disc. Ann N Y Acad Sci. 1096:44–54. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wallach D: The TNF family: Only the surface has been scratched. Semin Immunol. 26:181–182. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal BB, Gupta SC and Kim JH: Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 119:651–665. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Tian Y, Phillips KL, Chiverton N, Haddock G, Bunning RA, Cross AK, Shapiro IM, Le Maitre CL and Risbud MV: Tumor necrosis factor alpha- and interleukin-1beta-dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1. Arthritis Rheum. 65:832–842. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nakawaki M, Uchida K, Miyagi M, Inoue G, Kawakubo A, Kuroda A, Satoh M and Takaso M: Sequential CCL2 expression profile after disc injury in mice. J Orthop Res. 38:895–901. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chou PH, Chee A, Shi P, Lin CL, Zhao Y, Zhang L and An HS: Small molecule antagonist of C-C chemokine receptor 1 (CCR1) reduces disc inflammation in the rabbit model. Spine J. 20:2025–2036. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Wang X, Pan H, Yang H, Li X, Zhang K, Wang H, Zheng Z, Liu H and Wang J: Resistin promotes CCL4 expression through toll-like receptor-4 and activation of the p38-MAPK and NF-ĸB signaling pathways: Implications for intervertebral disc degeneration. Osteoarthritis Cartilage. 25:341–350. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hwang MH, Son HG, Lee JW, Yoo CM, Shin JH, Nam HG, Lim HJ, Baek SM, Park JH, Kim JH and Choi H: Photobiomodulation of extracellular matrix enzymes in human nucleus pulposus cells as a potential treatment for intervertebral disk degeneration. Sci Rep. 8:116542018. View Article : Google Scholar : PubMed/NCBI | |
Abe Y, Akeda K, An HS, Aoki Y, Pichika R, Muehleman C, Kimura T and Masuda K: Proinflammatory cytokines stimulate the expression of nerve growth factor by human intervertebral disc cells. Spine (Phila Pa 1976). 32:635–642. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dudli S, Liebenberg E, Magnitsky S, Lu B, Lauricella M and Lotz JC: Modic type 1 change is an autoimmune response that requires a proinflammatory milieu provided by the ‘Modic disc’. Spine J. 18:831–844. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jia J, Nie L and Liu Y: Butyrate alleviates inflammatory response and NF-ĸB activation in human degenerated intervertebral disc tissues. Int Immunopharmacol. 78:1060042020. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Tang P, Dong W, Lu Y, Tan B, Zhou N, Hao J, Shen J and Hu Z: SIRT1 alleviates IL-1β induced nucleus pulposus cells pyroptosis via mitophagy in intervertebral disc degeneration. Int Immunopharmacol. 107:1086712022. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Ding W, Sun W, Sun XJ, Xie YZ, Zhao CQ and Zhao J: Beta1 integrin inhibits apoptosis induced by cyclic stretch in annulus fibrosus cells via ERK1/2 MAPK pathway. Apoptosis. 21:13–24. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kang H, Dong Y, Peng R, Liu H, Guo Q, Song K, Zhu M, Yu K, Wu W and Li F: Inhibition of IRE1 suppresses the catabolic effect of IL-1β on nucleus pulposus cell and prevents intervertebral disc degeneration in vivo. Biochem Pharmacol. 197:1149322022. View Article : Google Scholar : PubMed/NCBI | |
Zhao F, Guo Z, Hou F, Fan W, Wu B and Qian Z: Magnoflorine alleviates ‘M1’ polarized macrophage-induced intervertebral disc degeneration through repressing the HMGB1/Myd88/NF-ĸB pathway and NLRP3 inflammasome. Front Pharmacol. 12:7010872021. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Wang P, Hu B, Liu W, Lv X, Chen S and Shao Z: HSP90 inhibitor 17-AAG attenuates nucleus pulposus inflammation and catabolism induced by M1-polarized macrophages. Front Cell Dev Biol. 9:7969742022. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Wang P, Hu B, Lv X, Liu W, Chen S and Shao Z: Inhibiting heat shock protein 90 attenuates nucleus pulposus fibrosis and pathologic angiogenesis induced by macrophages via down-regulating cell migration-inducing protein. Am J Pathol. 193:960–976. 2023. View Article : Google Scholar : PubMed/NCBI | |
England H, Summersgill HR, Edye ME, Rothwell NJ and Brough D: Release of interleukin-1alpha or interleukin-1beta depends on mechanism of cell death. J Biol Chem. 289:15942–15950. 2014. View Article : Google Scholar : PubMed/NCBI | |
Phillips KL, Jordan-Mahy N, Nicklin MJ and Le Maitre CL: Interleukin-1 receptor antagonist deficient mice provide insights into pathogenesis of human intervertebral disc degeneration. Ann Rheum Dis. 72:1860–1867. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hasvik E, Schjolberg T, Jacobsen DP, Haugen AJ, Grøvle L, Schistad EI and Gjerstad J: Up-regulation of circulating microRNA-17 is associated with lumbar radicular pain following disc herniation. Arthritis Res Ther. 21:1862019. View Article : Google Scholar : PubMed/NCBI | |
Cui S and Zhang L: microRNA-129-5p shuttled by mesenchymal stem cell-derived extracellular vesicles alleviates intervertebral disc degeneration via blockade of LRG1-mediated p38 MAPK activation. J Tissue Eng. 12:204173142110216792021. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Sun Z, Xu B, Duan W, Chang L, Lai K and Ye Z: Degenerated nucleus pulposus cells derived exosome carrying miR-27a-3p aggravates intervertebral disc degeneration by inducing M1 polarization of macrophages. J Nanobiotechnology. 21:3172023. View Article : Google Scholar : PubMed/NCBI | |
Murray PJ: Macrophage polarization. Annu Rev Physiol. 79:541–566. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto Y, Kokubo Y, Nakajima H, Honjoh K, Watanabe S and Matsumine A: Distribution and polarization of hematogenous macrophages associated with the progression of intervertebral disc degeneration. Spine (Phila Pa 1976). 47:E149–E158. 2022. View Article : Google Scholar : PubMed/NCBI | |
Greenlee-Wacker MC: Clearance of apoptotic neutrophils and resolution of inflammation. Immunol Rev. 273:357–370. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ip WKE, Hoshi N, Shouval DS, Snapper S and Medzhitov R: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 356:513–519. 2017. View Article : Google Scholar : PubMed/NCBI | |
Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW and Chawla A: Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 447:1116–1120. 2007. View Article : Google Scholar : PubMed/NCBI | |
Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans RM, et al: STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-Regulated gene expression in macrophages and dendritic cells. Immunity. 33:699–712. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kawakubo A, Miyagi M, Yokozeki Y, Nakawaki M, Takano S, Satoh M, Itakura M, Inoue G, Takaso M and Uchida K: Origin of M2 Mϕ and its macrophage polarization by TGF-β in a mice intervertebral injury model. Int J Immunopathol Pharmacol. 36:39463202211037922022. View Article : Google Scholar : PubMed/NCBI | |
Xu YQ, Zhang ZH, Zheng YF and Feng SQ: Dysregulated miR-133a mediates loss of type II collagen by directly targeting matrix metalloproteinase 9 (MMP9) in human intervertebral disc degeneration. Spine (Phila Pa 1976). 41:E717–E724. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi T, Kim H, Liu X, Sugiura H, Kohyama T, Fang Q, Wen FQ, Abe S, Wang X, Atkinson JJ, et al: Matrix metalloproteinase-9 activates TGF-beta and stimulates fibroblast contraction of collagen gels. Am J Physiol Lung Cell Mol Physiol. 306:L1006–L1015. 2014. View Article : Google Scholar : PubMed/NCBI | |
van Caam A, Vonk M, van den Hoogen F, van Lent P and van der Kraan P: Unraveling SSc Pathophysiology; The Myofibroblast. Front Immunol. 9:24522018. View Article : Google Scholar : PubMed/NCBI | |
Abbott RD, Purmessur D, Monsey RD, Brigstock DR, Laudier DM and Iatridis JC: Degenerative grade affects the responses of human nucleus pulposus cells to link-N, CTGF, and TGFβ3. J Spinal Disord Tech. 26:E86–E94. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wei Q, Liu D, Chu G, Yu Q, Liu Z, Li J, Meng Q, Wang W, Han F and Li B: TGF-β1-supplemented decellularized annulus fibrosus matrix hydrogels promote annulus fibrosus repair. Bioact Mater. 19:581–593. 2022.PubMed/NCBI | |
Zhu L, Yang Y, Yan Z, Zeng J, Weng F, Shi Y, Shen P, Liu L and Yang H: Controlled release of TGF-β3 for effective local endogenous repair in IDD using rat model. Int J Nanomedicine. 17:2079–2096. 2022. View Article : Google Scholar : PubMed/NCBI | |
Montgomery SR, Nargizyan T, Meliton V, Nachtergaele S, Rohatgi R, Stappenbeck F, Jung ME, Johnson JS, Aghdasi B, Tian H, et al: A novel osteogenic oxysterol compound for therapeutic development to promote bone growth: activation of hedgehog signaling and osteogenesis through smoothened binding. J Bone Miner Res. 29:1872–1885. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jacobsen CM, Schwartz MA, Roberts HJ, Lim KE, Spevak L, Boskey AL, Zurakowski D, Robling AG and Warman ML: Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I Osteogenesis Imperfecta. Bone. 90:127–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ramasamy SK, Kusumbe AP, Wang L and Adams RH: Endothelial notch activity promotes angiogenesis and osteogenesis in bone. Nature. 507:376–380. 2014. View Article : Google Scholar : PubMed/NCBI | |
Heggli I, Teixeira GQ, Iatridis JC, Neidlinger-Wilke C and Dudli S: The role of the complement system in disc degeneration and Modic changes. JOR Spine. 7:e13122024. View Article : Google Scholar : PubMed/NCBI | |
Komori T: Cell death in chondrocytes, osteoblasts, and osteocytes. Int J Mol Sci. 17:20452016. View Article : Google Scholar : PubMed/NCBI | |
Albert HB, Lambert P, Rollason J, Sorensen JS, Worthington T, Pedersen MB, Nørgaard HS, Vernallis A, Busch F, Manniche C and Elliott T: Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J. 22:690–696. 2013. View Article : Google Scholar : PubMed/NCBI | |
Riegger J, Huber-Lang M and Brenner RE: Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. Osteoarthritis Cartilage. 28:685–697. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fatoba O, Itokazu T and Yamashita T: Complement cascade functions during brain development and neurodegeneration. FEBS J. 289:2085–2109. 2022. View Article : Google Scholar : PubMed/NCBI | |
Koivisto K, Jarvinen J, Karppinen J, Haapea M, Paananen M, Kyllönen E, Tervonen O and Niinimäki J: The effect of zoledronic acid on type and volume of Modic changes among patients with low back pain. BMC Musculoskelet Disord. 18:2742017. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Chu B, Feng Y, Xu F and Zou YF: Modic changes in lumbar spine: Prevalence and distribution patterns of end plate oedema and end plate sclerosis. Br J Radiol. 89:201506502016. View Article : Google Scholar : PubMed/NCBI | |
Galbusera F, Casaroli G and Bassani T: Artificial intelligence and machine learning in spine research. JOR Spine. 2:e10442019. View Article : Google Scholar : PubMed/NCBI | |
Gao KT, Tibrewala R, Hess M, Bharadwaj UU, Inamdar G, Link TM, Chin CT, Pedoia V and Majumdar S: Automatic detection and voxel-wise mapping of lumbar spine Modic changes with deep learning. JOR Spine. 5:e12042022. View Article : Google Scholar : PubMed/NCBI | |
Rajasekaran S, Bt P, Murugan C, Mengesha MG, Easwaran M, Naik AS, Ks SVA, Kanna RM and Shetty AP: The disc-endplate-bone-marrow complex classification: progress in our understanding of Modic vertebral endplate changes and their clinical relevance. Spine J. 24:34–45. 2024. View Article : Google Scholar : PubMed/NCBI | |
Laustsen AF and Bech-Azeddine R: Do Modic changes have an impact on clinical outcome in lumbar spine surgery? A systematic literature review. Eur Spine J. 25:3735–3745. 2016. View Article : Google Scholar : PubMed/NCBI | |
Määttä JH, Wadge S, MacGregor A, Karppinen J and Williams FM: ISSLS prize winner: Vertebral endplate (Modic) change is an independent risk factor for episodes of severe and disabling low back pain. Spine (Phila Pa 1976). 40:1187–1193. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jensen TS, Karppinen J, Sorensen JS, Niinimäki J and Leboeuf-Yde C: Vertebral endplate signal changes (Modic change): A systematic literature review of prevalence and association with non-specific low back pain. Eur Spine J. 17:1407–1422. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lambrechts MJ, Brush P, Issa TZ, Toci GR, Heard JC, Syal A, Schilken MM, Canseco JA, Kepler CK and Vaccaro AR: Evaluating the impact of modic changes on operative treatment in the cervical and Lumbar Spine: A systematic review and meta-analysis. Int J Environ Res Public Health. 19:101582022. View Article : Google Scholar : PubMed/NCBI | |
Nian S, Li N, Kong F, Lu S and Chen J: Is discectomy effective for treating low back pain in patients with lumbar disc herniation and Modic changes? A systematic review and meta-analysis of cohort studies. Spine J. 23:533–549. 2023. View Article : Google Scholar : PubMed/NCBI | |
Conger A, Burnham TR, Clark T, Teramoto M and McCormick ZL: The effectiveness of intraosseous basivertebral nerve radiofrequency ablation for the treatment of vertebrogenic low back pain: An updated systematic review with single-arm meta-analysis. Pain Med. 23 (Suppl 2):S50–S62. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ohtori S, Inoue G, Ito T, Koshi T, Ozawa T, Doya H, Saito T, Moriya H and Takahashi K: Tumor necrosis factor-immunoreactive cells and PGP 9.5-immunoreactive nerve fibers in vertebral endplates of patients with discogenic low back pain and modic type 1 or type 2 changes on MRI. Spine (Phila Pa 1976). 31:1026–1031. 2006. View Article : Google Scholar : PubMed/NCBI | |
DePalma MJ, Ketchum JM and Saullo T: What is the source of chronic low back pain and does age play a role? Pain Med. 12:224–233. 2011. View Article : Google Scholar : PubMed/NCBI | |
Depalma MJ, Ketchum JM, Trussell BS, Saullo TR and Slipman CW: Does the location of low back pain predict its source? PM R. 3:33–39. 2011. View Article : Google Scholar : PubMed/NCBI | |
Feng Z, Liu Y, Yang G, Battie MC and Wang Y: Lumbar vertebral endplate defects on magnetic resonance images: Classification, distribution patterns, and associations with modic changes and disc degeneration. Spine (Phila Pa 1976). 43:919–927. 2018. View Article : Google Scholar : PubMed/NCBI | |
Udby PM, Samartzis D, Carreon LY, Andersen MØ, Karppinen J and Modic M: A definition and clinical grading of Modic changes. J Orthop Res. 40:301–307. 2022. View Article : Google Scholar : PubMed/NCBI |