1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Ricci AD, Rizzo A and Brandi G: DNA damage
response alterations in gastric cancer: Knocking down a new wall.
Future Oncol. 17:865–868. 2021. View Article : Google Scholar : PubMed/NCBI
|
3
|
López MJ, Carbajal J, Alfaro AL, Saravia
LG, Zanabria D, Araujo JM, Quispe L, Zevallos A, Buleje JL, Cho CE,
et al: Characteristics of gastric cancer around the world. Crit Rev
Oncol Hematol. 181:1038412023. View Article : Google Scholar : PubMed/NCBI
|
4
|
Guggenheim DE and Shah MA: Gastric cancer
epidemiology and risk factors. J Surg Oncol. 107:230–236. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Yang K, Lu L, Liu H, Wang X, Gao Y, Yang
L, Li Y, Su M, Jin M and Khan S: A comprehensive update on early
gastric cancer: Defining terms, etiology, and alarming risk
factors. Expert Rev Gastroenterol Hepatol. 15:255–273. 2021.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Smyth EC, Nilsson M, Grabsch HI, van
Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648.
2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Song Z, Wu Y, Yang J, Yang D and Fang X:
Progress in the treatment of advanced gastric cancer. Tumour Biol.
39:10104283177146262017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Patel TH and Cecchini M: Targeted
therapies in advanced gastric cancer. Curr Treat Options Oncol.
21:702020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ricci AD, Rizzo A, Rojas Llimpe FLR, Di
Fabio F, De Biase D and Rihawi K: Novel HER2-directed treatments in
advanced gastric carcinoma: AnotHER paradigm shift? Cancers
(Basel). 13:16642021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rao X, Zhang C, Luo H, Zhang J, Zhuang Z,
Liang Z and Wu X: Targeting gastric cancer stem cells to enhance
treatment response. Cells. 11:28282022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bilotta MT, Antignani A and Fitzgerald DJ:
Managing the TME to improve the efficacy of cancer therapy. Front
Immunol. 13:9549922022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bejarano L, Jordāo MJC and Joyce JA:
Therapeutic targeting of the tumor microenvironment. Cancer Discov.
11:933–959. 2021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rizzo A, Santoni M, Mollica V, Logullo F,
Rosellini M, Marchetti A, Faloppi L, Battelli N and Massari F:
Peripheral neuropathy and headache in cancer patients treated with
immunotherapy and immuno-oncology combinations: The MOUSEION-02
study. Expert Opin Drug Metab Toxicol. 17:1455–1466. 2021.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Xia Y, Rao L, Yao H, Wang Z, Ning P and
Chen X: Engineering macrophages for cancer immunotherapy and drug
delivery. Adv Mater. 32:e20020542020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mantovani A, Sozzani S, Locati M, Allavena
P and Sica A: Macrophage polarization: Tumor-associated macrophages
as a paradigm for polarized M2 mononuclear phagocytes. Trends
Immunol. 23:549–555. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hu X, Ma Z, Xu B, Li S, Yao Z, Liang B,
Wang J, Liao W, Lin L, Wang C, et al: Glutamine metabolic
microenvironment drives M2 macrophage polarization to mediate
trastuzumab resistance in HER2-positive gastric cancer. Cancer
Commun (Lond). 43:909–937. 2023. View Article : Google Scholar : PubMed/NCBI
|
17
|
Shi Q, Shen Q, Liu Y, Shi Y, Huang W, Wang
X, Li Z, Chai Y, Wang H, Hu X, et al: Increased glucose metabolism
in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote
cancer metastasis and chemoresistance. Cancer Cell.
40:1207–1222.e10. 2022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367:eaau69772020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yang Y, Guo Z, Chen W, Wang X, Cao M, Han
X, Zhang K, Teng B, Cao J, Wu W, et al: M2 macrophage-derived
exosomes promote angiogenesis and growth of pancreatic ductal
adenocarcinoma by targeting E2F2. Mol Ther. 29:1226–1238. 2021.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Xu M, Zhou C, Weng J, Chen Z, Zhou Q, Gao
J, Shi G, Ke A, Ren N, Sun H and Shen Y: Tumor associated
macrophages-derived exosomes facilitate hepatocellular carcinoma
malignance by transferring lncMMPA to tumor cells and activating
glycolysis pathway. J Exp Clin Cancer Res. 41:2532022. View Article : Google Scholar : PubMed/NCBI
|
21
|
O'Brien K, Breyne K, Ughetto S, Laurent LC
and Breakefield XO: RNA delivery by extracellular vesicles in
mammalian cells and its applications. Nat Rev Mol Cell Biol.
21:585–606. 2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu
Y, Zhang Z, Cai S, Xu Y, Li X, et al: Tumor-derived exosomal
miR-934 induces macrophage M2 polarization to promote liver
metastasis of colorectal cancer. J Hematol Oncol. 13:1562020.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Han S, Bao X, Zou Y, Wang L, Li Y, Yang L,
Liao A, Zhang X, Jiang X, Liang D, et al: d-lactate modulates M2
tumor-associated macrophages and remodels immunosuppressive tumor
microenvironment for hepatocellular carcinoma. Sci Adv.
9:eadg26972023. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gao J, Liang Y and Wang L: Shaping
polarization of tumor-associated macrophages in cancer
immunotherapy. Front Immunol. 13:8887132022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hu Q, Yao J, Wu X, Li J, Li G, Tang W, Liu
J and Wan M: Emodin attenuates severe acute pancreatitis-associated
acute lung injury by suppressing pancreatic exosome-mediated
alveolar macrophage activation. Acta Pharm Sin B. 12:3986–4003.
2022. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Rehmsmeier M, Steffen P, Hochsmann M and
Giegerich R: Fast and effective prediction of microRNA/target
duplexes. RNA. 10:1507–1517. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu C, Li S and Tang Y: Mechanism of
cisplatin resistance in gastric cancer and associated microRNAs.
Cancer Chemother Pharmacol. 92:329–340. 2023. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang Q, Huang C, Wang D, Tao Z, Zhang H,
Zhao Y, Wang M, Zhou C, Xu J, Shen B and Zhu W: Gastric cancer
derived mesenchymal stem cells promoted DNA repair and cisplatin
resistance through up-regulating PD-L1/Rad51 in gastric cancer.
Cell Signal. 106:1106392023. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hou G, Bai Y, Jia A, Ren Y, Wang Y, Lu J,
Wang P, Zhang J and Lu Z: Inhibition of autophagy improves
resistance and enhances sensitivity of gastric cancer cells to
cisplatin. Can J Physiol Pharmacol. 98:449–458. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Peng L, Sang H, Wei S, Li Y, Jin D, Zhu X,
Li X, Dang Y and Zhang G: circCUL2 regulates gastric cancer
malignant transformation and cisplatin resistance by modulating
autophagy activation via miR-142-3p/ROCK2. Mol Cancer. 19:1562020.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Baba H, Takeuchi H, Inutsuka S, Yamamoto
M, Endo K, Ohno S, Maehara Y and Sugimachi K: Clinical value of SDI
test for predicting effect of postoperative chemotherapy for
patients with gastric cancer. Semin Surg Oncol. 10:140–144. 1994.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen SH and Chang JY: New insights into
mechanisms of cisplatin resistance: From tumor cell to
microenvironment. Int J Mol Sci. 20:41362019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yan XY, Qu XZ, Xu L, Yu SH, Tian R, Zhong
XR, Sun LK and Su J: Insight into the role of p62 in the cisplatin
resistant mechanisms of ovarian cancer. Cancer Cell Int.
20:1282020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang S, Li MY, Liu Y, Vlantis AC, Chan JY,
Xue L, Hu BG, Yang S, Chen MX, Zhou S, et al: The role of microRNA
in cisplatin resistance or sensitivity. Expert Opin Ther Targets.
24:885–897. 2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bellmunt J, Pons F and Orsola A: Molecular
determinants of response to cisplatin-based neoadjuvant
chemotherapy. Curr Opin Urol. 23:466–471. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Misumi T, Tanabe K, Fujikuni N and Ohdan
H: Stimulation of natural killer cells with rhCD137 ligand enhances
tumor-targeting antibody efficacy in gastric cancer. PLoS One.
13:e02048802018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Olsen LC and Færgeman NJ: Chemical
genomics and emerging DNA technologies in the identification of
drug mechanisms and drug targets. Curr Top Med Chem. 12:1331–1345.
2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lill JR, Mathews WR, Rose CM and Schirle
M: Proteomics in the pharmaceutical and biotechnology industry: A
look to the next decade. Expert Rev Proteomics. 18:503–526. 2021.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Dinić J, Efferth T, Garcia-Sosa AT,
Grahovac J, Padrón JM, Pajeva I, Rizzolio F, Saponara S, Spengler G
and Tsakovska I: Repurposing old drugs to fight multidrug resistant
cancers. Drug Resist Updat. 52:1007132020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Brewer JR, Chang E, Agrawal S, Singh H,
Suzman DL, Xu J, Weinstock C, Fernandes LL, Cheng J, Zhang L, et
al: Regulatory considerations for contribution of effect of drugs
used in combination regimens: Renal cell cancer case studies. Clin
Cancer Res. 26:6406–6411. 2020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Biankin AV, Piantadosi S and Hollingsworth
SJ: Patient-centric trials for therapeutic development in precision
oncology. Nature. 526:361–370. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Mahomed S, Padayatchi N, Singh J and
Naidoo K: Precision medicine in resistant Tuberculosis: Treat the
correct patient, at the correct time, with the correct drug. J
Infect. 78:261–268. 2019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yang C, Deng X, Tang Y, Tang H and Xia C:
Natural products reverse cisplatin resistance in the hypoxic tumor
microenvironment. Cancer Lett. 598:2171162024. View Article : Google Scholar : PubMed/NCBI
|
45
|
Otvos L: The latest trends in peptide drug
discovery and future challenges. Expert Opin Drug Discov.
19:869–872. 2024. View Article : Google Scholar : PubMed/NCBI
|
46
|
Asaoka Y, Ikenoue T and Koike K: New
targeted therapies for gastric cancer. Expert Opin Investig Drugs.
20:595–604. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Liu L, Wu N and Li J: Novel targeted
agents for gastric cancer. J Hematol Oncol. 5:312012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Portilla LM, Evans G, Eng B and Fadem TJ:
Advancing translational research collaborations. Sci Transl Med.
2:63cm302010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Munoz-Sanjuan I and Bates GP: The
importance of integrating basic and clinical research toward the
development of new therapies for Huntington disease. J Clin Invest.
121:476–483. 2011. View Article : Google Scholar : PubMed/NCBI
|
50
|
Li M, Yang Y, Xiong L, Jiang P, Wang J and
Li C: Metabolism, metabolites, and macrophages in cancer. J Hematol
Oncol. 16:802023. View Article : Google Scholar : PubMed/NCBI
|
51
|
Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H,
Xiao GG, Rao L and Duo Y: Macrophages in immunoregulation and
therapeutics. Signal Transduct Target Ther. 8:2072023. View Article : Google Scholar : PubMed/NCBI
|
52
|
Locati M, Curtale G and Mantovani A:
Diversity, mechanisms, and significance of macrophage plasticity.
Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wang S, Liu R, Yu Q, Dong L, Bi Y and Liu
G: Metabolic reprogramming of macrophages during infections and
cancer. Cancer Lett. 452:14–22. 2019. View Article : Google Scholar : PubMed/NCBI
|
54
|
Wang HC, Haung LY, Wang CJ, Chao YJ, Hou
YC, Yen CJ and Shan YS: Tumor-associated macrophages promote
resistance of hepatocellular carcinoma cells against sorafenib by
activating CXCR2 signaling. J Biomed Sci. 29:992022. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhang G, Tao X, Ji B and Gong J:
Hypoxia-driven M2-polarized macrophages facilitate cancer
aggressiveness and temozolomide resistance in glioblastoma. Oxid
Med Cell Longev. 2022:16143362022.PubMed/NCBI
|
56
|
Huang J, Pan H, Sun J, Wu J, Xuan Q, Wang
J, Ke S, Lu S, Li Z, Feng Z, et al: TMEM147 aggravates the
progression of HCC by modulating cholesterol homeostasis,
suppressing ferroptosis, and promoting the M2 polarization of
tumor-associated macrophages. J Exp Clin Cancer Res. 42:2862023.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Ngabire D, Niyonizigiye I, Patil MP, Seong
YA, Seo YB and Kim GD: M2 macrophages mediate the resistance of
gastric adenocarcinoma cells to 5-fluorouracil through the
expression of integrin β 3, focal adhesion kinase, and cofilin. J
Immunol Res. 2020:17314572020. View Article : Google Scholar : PubMed/NCBI
|
58
|
Li J, Bao Y, Peng S, Jiang C, Zhu L, Zou
S, Xu J and Li Y: M2 macrophages-derived exosomal miRNA-23a-3p
promotes the progression of oral squamous cell carcinoma by
targeting PTEN. Curr Issues Mol Biol. 45:4936–4947. 2023.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Tian B, Zhou L, Wang J and Yang P:
miR-660-5p-loaded M2 macrophages-derived exosomes augment
hepatocellular carcinoma development through regulating KLF3. Int
Immunopharmacol. 101:1081572021. View Article : Google Scholar : PubMed/NCBI
|
60
|
Cui HY, Rong JS, Chen J, Guo J, Zhu JQ,
Ruan M, Zuo RR, Zhang SS, Qi JM and Zhang BH: Exosomal microRNA-588
from M2 polarized macrophages contributes to cisplatin resistance
of gastric cancer cells. World J Gastroenterol. 27:6079–6092. 2021.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Wang B, Cai Y, Li X, Kong Y, Fu H and Zhou
J: ETV4 mediated lncRNA C2CD4D-AS1 overexpression contributes to
the malignant phenotype of lung adenocarcinoma cells via
miR-3681-3p/NEK2 axis. Cell Cycle. 20:2607–2618. 2021. View Article : Google Scholar : PubMed/NCBI
|
62
|
Zhu MC, Zhang YH, Xiong P, Fan XW, Li GL
and Zhu M: Circ-GSK3B up-regulates GSK3B to suppress the
progression of lung adenocarcinoma. Cancer Gene Ther. 29:1761–1772.
2022. View Article : Google Scholar : PubMed/NCBI
|
63
|
DuPrie ML, Palacio T, Calil FA, Kolodner
RD and Putnam CD: Mlh1 interacts with both Msh2 and Msh6 for
recruitment during mismatch repair. DNA Repair (Amst).
119:1034052022. View Article : Google Scholar : PubMed/NCBI
|
64
|
Manzoor S, Saber-Ayad M, Maghazachi AA,
Hamid Q and Muhammad JS: MLH1 mediates cytoprotective nucleophagy
to resist 5-fluorouracil-induced cell death in colorectal
carcinoma. Neoplasia. 24:76–85. 2022. View Article : Google Scholar : PubMed/NCBI
|
65
|
Han Y, Peng Y, Fu Y, Cai C, Guo C, Liu S,
Li Y, Chen Y, Shen E, Long K, et al: MLH1 deficiency induces
cetuximab resistance in colon cancer via her-2/PI3K/AKT signaling.
Adv Sci (Weinh). 7:20001122020. View Article : Google Scholar : PubMed/NCBI
|
66
|
Scarpa M, Ruffolo C, Kotsafti A, Canal F,
Erroi F, Basato S, DallAgnese L, Fiorot A, Pozza A, Brun P, et al:
MLH1 deficiency down-regulates TLR4 expression in sporadic
colorectal cancer. Front Mol Biosci. 8:6248732021. View Article : Google Scholar : PubMed/NCBI
|
67
|
Hashimoto T, Kurokawa Y, Takahashi T,
Miyazaki Y, Tanaka K, Makino T, Yamasaki M, Nakajima K, Ikeda JI,
Mori M and Doki Y: Predictive value of MLH1 and PD-L1 expression
for prognosis and response to preoperative chemotherapy in gastric
cancer. Gastric Cancer. 22:785–792. 2019. View Article : Google Scholar : PubMed/NCBI
|