
Mechanisms of microplastics on gastrointestinal injury and liver metabolism disorder (Review)
- Authors:
- Li Zhou
- Lidan Ran
- Yufen He
- Yaxi Huang
-
Affiliations: Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China, Department of Critical Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China, Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China - Published online on: February 18, 2025 https://doi.org/10.3892/mmr.2025.13463
- Article Number: 98
-
Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti MCA, Baiocco F, Draghi S, et al: Plasticenta: First evidence of microplastics in human placenta. Environ Int. 146:1062742021. View Article : Google Scholar : PubMed/NCBI | |
Rochman CM, Hoh E, Hentschel BT and Kaye S: Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris. Environ Sci Technol. 47:1646–1654. 2013.PubMed/NCBI | |
Wang W, Ge J, Yu X and Li H: Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Sci Total Environ. 708:1348412020. View Article : Google Scholar : PubMed/NCBI | |
Prata JC, da Costa JP, Lopes I, Duarte AC and Rocha-Santos T: Environmental exposure to microplastics: An overview on possible human health effects. Sci Total Environ. 702:1344552020. View Article : Google Scholar : PubMed/NCBI | |
Pironti C, Ricciardi M, Motta O, Miele Y, Proto A and Montano L: Microplastics in the environment: intake through the food web, human exposure and toxicological effects. Toxics. 9:2242021. View Article : Google Scholar : PubMed/NCBI | |
Thomas PJ, Perono G, Tommasi F, Pagano G, Oral R, Burić P, Kovačić I, Toscanesi M, Trifuoggi M and Lyons DM: Resolving the effects of environmental micro- and nanoplastics exposure in biota: A knowledge gap analysis. Sci Total Environ. 780:1465342021. View Article : Google Scholar : PubMed/NCBI | |
Amereh F, Amjadi N, Mohseni-Bandpei A, Isazadeh S, Mehrabi Y, Eslami A, Naeiji Z and Rafiee M: Placental plastics in young women from general population correlate with reduced foetal growth in IUGR pregnancies. Environ Pollut. 314:1201742022. View Article : Google Scholar : PubMed/NCBI | |
Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ and Lamoree MH: Discovery and quantification of plastic particle pollution in human blood. Environ Int. 163:1071992022. View Article : Google Scholar : PubMed/NCBI | |
Schwabl P, Köppel S, Königshofer P, Bucsics T, Trauner M, Reiberger T and Liebmann B: Detection of various microplastics in human stool: A prospective case series. Ann Intern Med. 171:453–457. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tong X, Li B, Li J, Li L, Zhang R, Du Y and Zhang Y: Polyethylene microplastics cooperate with Helicobacter pylori to promote gastric injury and inflammation in mice. Chemosphere. 288((Pt 2)): 1325792022. View Article : Google Scholar : PubMed/NCBI | |
Luo T, Wang C, Pan Z, Jin C, Fu Z and Jin Y: Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring. Environ Sci Technol. 53:10978–10992. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wang Y, Xu M, Ma J, Zhang S, Liu S, Wang K, Tian H and Cui J: Enhanced hepatic cytotoxicity of chemically transformed polystyrene microplastics by simulated gastric fluid. J Hazard Mater. 410:1245362021. View Article : Google Scholar : PubMed/NCBI | |
Yee MS, Hii LW, Looi CK, Lim WM, Wong SF, Kok YY, Tan BK, Wong CY and Leong CO: Impact of microplastics and nanoplastics on human health. Nanomaterials (Basel). 11:4962021. View Article : Google Scholar : PubMed/NCBI | |
Hesler M, Aengenheister L, Ellinger B, Drexel R, Straskraba S, Jost C, Wagner S, Meier F, von Briesen H, Büchel C, et al: Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicol In Vitro. 61:1046102019. View Article : Google Scholar : PubMed/NCBI | |
Cortés C, Domenech J, Salazar M, Pastor S, Marcos R and Hernández A: Nanoplastics as a potential environmental health factor: Effects of polystyrene nanoparticles on human intestinal epithelial Caco-2 cells. Environ Sci Nano. 7:272–285. 2020. View Article : Google Scholar | |
Dong X, Liu X, Hou Q and Wang Z: From natural environment to animal tissues: A review of microplastics(nanoplastics) translocation and hazards studies. Sci Total Environ. 855:1586862023. View Article : Google Scholar : PubMed/NCBI | |
Campanale C, Massarelli C, Savino I, Locaputo V and Uricchio VF: A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health. 17:12122020. View Article : Google Scholar : PubMed/NCBI | |
Barboza LGA, Dick Vethaak A, Lavorante BRBO, Lundebye AK and Guilhermino L: Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar Pollut Bull. 133:336–348. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bouwmeester H, Hollman PC and Peters RJ: Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environ Sci Technol. 49:8932–8947. 2015. View Article : Google Scholar : PubMed/NCBI | |
Domenech J, Hernández A, Rubio L, Marcos R and Cortés C: Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier. Arch Toxicol. 94:2997–3012. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hussain N, Jaitley V and Florence AT: Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev. 50:107–142. 2001. View Article : Google Scholar : PubMed/NCBI | |
Eldridge JH, Meulbroek JA, Staas JK, Tice TR and Gilley RM: Vaccine-containing biodegradable microspheres specifically enter the gut-associated lymphoid tissue following oral administration and induce a disseminated mucosal immune response. Adv Exp Med Biol. 251:191–202. 1989.PubMed/NCBI | |
Jani PU, McCarthy DE and Florence AT: Nanosphere and microsphere uptake via Peyer's patches: Observation of the rate of uptake in the rat after a single oral dose. Int J Pharm. 86:239–246. 1992. View Article : Google Scholar | |
Volkheimer G: Hematogenous dissemination of ingested polyvinyl chloride particles. Ann N Y Acad Sci. 246:164–171. 1975. View Article : Google Scholar : PubMed/NCBI | |
Banerjee A and Shelver WL: Micro- and nanoplastic induced cellular toxicity in mammals: A review. Sci Total Environ. 755((Pt 2)): 1425182021. View Article : Google Scholar : PubMed/NCBI | |
Varela JA, Bexiga MG, Åberg C, Simpson JC and Dawson KA: Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. J Nanobiotechnology. 10:392012. View Article : Google Scholar : PubMed/NCBI | |
Nowak M, Brown TD, Graham A, Helgeson ME and Mitragotri S: Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng Transl Med. 5:e101532020. View Article : Google Scholar : PubMed/NCBI | |
Firdessa R, Oelschlaeger TA and Moll H: Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: Relevance for drug delivery systems. Eur J Cell Biol. 93:323–337. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME and DeSimone JM: The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA. 105:11613–11618. 2008. View Article : Google Scholar : PubMed/NCBI | |
Carr KE, Smyth SH, McCullough MT, Morris JF and Moyes SM: Morphological aspects of interactions between microparticles and mammalian cells: Intestinal uptake and onward movement. Prog Histochem Cytochem. 46:185–252. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schmidt C, Lautenschlaeger C, Collnot EM, Schumann M, Bojarski C, Schulzke JD, Lehr CM and Stallmach A: Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa: A first in vivo study in human patients. J Control Release. 165:139–145. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li S and Malmstadt N: Deformation and poration of lipid bilayer membranes by cationic nanoparticles. Soft Matter. 9:4969–4976. 2013. View Article : Google Scholar | |
Xie W, You J, Zhi C and Li L: The toxicity of ambient fine particulate matter (PM2.5) to vascular endothelial cells. J Appl Toxicol. 41:713–723. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gopinath PM, Saranya V, Vijayakumar S, Mythili Meera M, Ruprekha S, Kunal R, Pranay A, Thomas J, Mukherjee A and Chandrasekaran N: Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics. Sci Rep. 9:88602019. View Article : Google Scholar : PubMed/NCBI | |
Hollóczki O and Gehrke S: Nanoplastics can change the secondary structure of proteins. Sci Rep. 9:160132019. View Article : Google Scholar : PubMed/NCBI | |
Goodman KE, Hare JT, Khamis ZI, Hua T and Sang QA: Exposure of human lung cells to polystyrene microplastics significantly retards cell proliferation and triggers morphological changes. Chem Res Toxicol. 34:1069–1081. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Halimu G, Zhang Q, Song Y, Fu X, Li Y, Li Y and Zhang H: Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ. 694:1337942019. View Article : Google Scholar : PubMed/NCBI | |
Hirt N and Body-Malapel M: Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature. Part Fibre Toxicol. 17:572020. View Article : Google Scholar : PubMed/NCBI | |
Cheng W, Li X, Zhou Y, Yu H, Xie Y, Guo H, Wang H, Li Y, Feng Y and Wang Y: Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids. Sci Total Environ. 806((Pt 1)): 1503282022. View Article : Google Scholar : PubMed/NCBI | |
Li B, Ding Y, Cheng X, Sheng D, Xu Z, Rong Q, Wu Y, Zhao H, Ji X and Zhang Y: Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere. 244:1254922020. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Li H, Wang J, Wu B and Guo X: Polystyrene microplastics aggravate inflammatory damage in mice with intestinal immune imbalance. Sci Total Environ. 833:1551982022. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Yan Z, Shen R, Wang M, Huang Y, Ren H, Zhang Y and Lemos B: Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut. Environ Int. 143:1059162020. View Article : Google Scholar : PubMed/NCBI | |
Shi C, Han X, Guo W, Wu Q, Yang X, Wang Y, Tang G, Wang S, Wang Z, Liu Y, et al: Disturbed Gut-liver axis indicating oral exposure to polystyrene microplastic potentially increases the risk of insulin resistance. Environ Int. 164:1072732022. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Lu L, Tu W, Luo T and Fu Z: Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ. 649:308–317. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hwang J, Choi D, Han S, Choi J and Hong J: An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci Total Environ. 684:657–669. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Zhang R, Li B, Du Y, Li J, Tong X, Wu Y, Ji X and Zhang Y: Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells. Environ Pollut. 280:1169742021. View Article : Google Scholar : PubMed/NCBI | |
Domenech J, de Britto M, Velázquez A, Pastor S, Hernández A, Marcos R and Cortés C: Long-term effects of polystyrene nanoplastics in human intestinal caco-2 cells. Biomolecules. 11:14422021. View Article : Google Scholar : PubMed/NCBI | |
Eleutherio ECA, Silva Magalhães RS, de Araújo Brasil A, Monteiro Neto JR and de Holanda Paranhos L: SOD1, more than just an antioxidant. Arch Biochem Biophys. 697:1087012021. View Article : Google Scholar : PubMed/NCBI | |
Johnson P: Antioxidant enzyme expression in health and disease: Effects of exercise and hypertension. Comp Biochem Physiol C Toxicol Pharmacol. 133:493–505. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jakubczyk K, Dec K, Kałduńska J, Kawczuga D, Kochman J and Janda K: Reactive oxygen species-sources, functions, oxidative damage. Pol Merkur Lekarski. 48:124–127. 2020.PubMed/NCBI | |
Wang X, Zheng H, Zhao J, Luo X, Wang Z and Xing B: Photodegradation elevated the toxicity of polystyrene microplastics to grouper (Epinephelus moara) through disrupting hepatic lipid homeostasis. Environ Sci Technol. 54:6202–6212. 2020. View Article : Google Scholar : PubMed/NCBI | |
DeLoid GM, Cao X, Bitounis D, Singh D, Llopis PM, Buckley B and Demokritou P: Toxicity, uptake, and nuclear translocation of ingested micro-nanoplastics in an in vitro model of the small intestinal epithelium. Food Chem Toxicol. 158:1126092021. View Article : Google Scholar : PubMed/NCBI | |
He Y, Li Z, Xu T, Luo D, Chi Q, Zhang Y and Li S: Polystyrene nanoplastics deteriorate LPS-modulated duodenal permeability and inflammation in mice via ROS drived-NF-κB/NLRP3 pathway. Chemosphere. 307((Pt 1)): 1356622022. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Zhang Y, Lemos B and Ren H: Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep. 7:466872017. View Article : Google Scholar : PubMed/NCBI | |
Rubio L, Marcos R and Hernández A: Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models. J Toxicol Environ Health B Crit Rev. 23:51–68. 2020. View Article : Google Scholar : PubMed/NCBI | |
Powell JJ, Thoree V and Pele LC: Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract. Br J Nutr. 98 (Suppl 1):S59–S63. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang D, Zhang Y, Long J, Yang X, Bao L, Yang Z, Wu B, Si R, Zhao W, Peng C, et al: Polystyrene microplastic exposure induces insulin resistance in mice via dysbacteriosis and pro-inflammation. Sci Total Environ. 838((Pt 1)): 1559372022. View Article : Google Scholar : PubMed/NCBI | |
Forte M, Iachetta G, Tussellino M, Carotenuto R, Prisco M, De Falco M, Laforgia V and Valiante S: Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol In Vitro. 31:126–136. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reuter S, Gupta SC, Chaturvedi MM and Aggarwal BB: Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med. 49:1603–1616. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Zhang Y, Lu Y, He L, Qu J, Zhou C, Hong P, Sun S, Zhao H, Liang Y, et al: The complex toxicity of tetracycline with polystyrene spheres on gastric cancer cells. Int J Environ Res Public Health. 17:28082020. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Wang C, Yu N, Si L, Zhu L, Zeng A, Liu Z and Wang X: INF2 regulates oxidative stress-induced apoptosis in epidermal HaCaT cells by modulating the HIF1 signaling pathway. Biomed Pharmacother. 111:151–161. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vethaak AD and Legler J: Microplastics and human health. Science. 371:672–674. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Wan Z, Luo T, Fu Z and Jin Y: Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ. 631-632:449–458. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wan Z, Wang C, Zhou J, Shen M, Wang X, Fu Z and Jin Y: Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere. 217:646–658. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Bao Z, Wan Z, Fu Z and Jin Y: Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish. Sci Total Environ. 710:1362792020. View Article : Google Scholar : PubMed/NCBI | |
Shi L and Tu BP: Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol. 33:125–131. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou P, Santoro A, Peroni OD, Nelson AT, Saghatelian A, Siegel D and Kahn BB: PAHSAs enhance hepatic and systemic insulin sensitivity through direct and indirect mechanisms. J Clin Invest. 129:4138–4150. 2019. View Article : Google Scholar : PubMed/NCBI | |
Syed I, Lee J, Moraes-Vieira PM, Donaldson CJ, Sontheimer A, Aryal P, Wellenstein K, Kolar MJ, Nelson AT, Siegel D, et al: Palmitic acid hydroxystearic acids activate GPR40, which is involved in their beneficial effects on glucose homeostasis. Cell Metab. 27:419–427.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vijayakumar A, Aryal P, Wen J, Syed I, Vazirani RP, Moraes-Vieira PM, Camporez JP, Gallop MR, Perry RJ, Peroni OD, et al: Absence of carbohydrate response element binding protein in adipocytes causes systemic insulin resistance and impairs glucose transport. Cell Rep. 21:1021–1035. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wen B, Zhang N, Jin SR, Chen ZZ, Gao JZ, Liu Y, Liu HP and Xu Z: Microplastics have a more profound impact than elevated temperatures on the predatory performance, digestion and energy metabolism of an Amazonian cichlid. Aquat Toxicol. 195:67–76. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schlein C, Talukdar S, Heine M, Fischer AW, Krott LM, Nilsson SK, Brenner MB, Heeren J and Scheja L: FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab. 23:441–453. 2016. View Article : Google Scholar : PubMed/NCBI | |
Iizuka K, Takeda J and Horikawa Y: Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS Lett. 583:2882–2886. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bi Y, Chang Y, Liu Q, Mao Y, Zhai K, Zhou Y, Jiao R and Ji G: ERp44/CG9911 promotes fat storage in Drosophila adipocytes by regulating ER Ca(2+) homeostasis. Aging (Albany NY). 13:15013–15031. 2021. View Article : Google Scholar : PubMed/NCBI | |
Simha V and Garg A: Lipodystrophy: Lessons in lipid and energy metabolism. Curr Opin Lipidol. 17:162–169. 2006. View Article : Google Scholar : PubMed/NCBI | |
Iizuka K, Takao K and Yabe D: ChREBP-mediated regulation of lipid metabolism: Involvement of the gut microbiota, liver, and adipose tissue. Front Endocrinol (Lausanne). 11:5871892020. View Article : Google Scholar : PubMed/NCBI | |
Nunes-Nesi A, Araújo WL, Obata T and Fernie AR: Regulation of the mitochondrial tricarboxylic acid cycle. Curr Opin Plant Biol. 16:335–343. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B and De Bosscher K: Molecular actions of PPARalpha in lipid metabolism and inflammation. Endocr Rev. 39:760–802. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Wu Y, Zhang W, Shen T, Li H, Wu J, Zhang L, Qin L, Chen R, Gu W, et al: Lipidomics and transcriptomics insight into impacts of microplastics exposure on hepatic lipid metabolism in mice. Chemosphere. 308((Pt 3)): 1365912022. View Article : Google Scholar : PubMed/NCBI | |
Fan X, Wei X, Hu H, Zhang B, Yang D, Du H, Zhu R, Sun X, Oh Y and Gu N: Effects of oral administration of polystyrene nanoplastics on plasma glucose metabolism in mice. Chemosphere. 288((Pt 3)): 1326072022. View Article : Google Scholar : PubMed/NCBI | |
Islinger M, Cardoso MJ and Schrader M: Be different-the diversity of peroxisomes in the animal kingdom. Biochim Biophys Acta. 1803:881–897. 2010. View Article : Google Scholar : PubMed/NCBI | |
Marion-Letellier R, Savoye G and Ghosh S: Fatty acids, eicosanoids and PPAR gamma. Eur J Pharmacol. 785:44–49. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bhatt-Wessel B, Jordan TW, Miller JH and Peng L: Role of DGAT enzymes in triacylglycerol metabolism. Arch Biochem Biophys. 655:1–11. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR, Elias PM and Farese RV Jr: Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem. 279:11767–11776. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stock V, Fahrenson C, Thuenemann A, Dönmez MH, Voss L, Böhmert L, Braeuning A, Lampen A and Sieg H: Impact of artificial digestion on the sizes and shapes of microplastic particles. Food Chem Toxicol. 135:1110102020. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Shi W, Hu F, Song X, Cheng Z and Zhou J: Prolonged oral ingestion of microplastics induced inflammation in the liver tissues of C57BL/6J mice through polarization of macrophages and increased infiltration of natural killer cells. Ecotoxicol Environ Saf. 227:1128822021. View Article : Google Scholar : PubMed/NCBI | |
Qiao J, Chen R, Wang M, Bai R, Cui X, Liu Y, Wu C and Chen C: Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction. Nanoscale. 13:8806–8816. 2021. View Article : Google Scholar : PubMed/NCBI |