
Research progress of cPLA2 in cardiovascular diseases (Review)
- Authors:
- Wenyu Lin
- Shuya Wang
- Ronghan Liu
- Dan Zhang
- Jiaxing Zhang
- Xiaohan Qi
- Zheng Li
- Meng Miao
- Xiaojun Cai
- Guohai Su
-
Affiliations: Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China, Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong 250012, P.R. China - Published online on: February 19, 2025 https://doi.org/10.3892/mmr.2025.13468
- Article Number: 103
-
Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Wang S, Li B, Solomon V, Fonteh A, Rapoport SI, Bennett DA, Arvanitakis Z, Chui HC, Sullivan PM and Yassine HN: Calcium-dependent cytosolic phospholipase A2 activation is implicated in neuroinflammation and oxidative stress associated with ApoE4. Mol Neurodegener. 17:422022. View Article : Google Scholar : PubMed/NCBI | |
Jin W, Zhao J, Yang E, Wang Y, Wang Q, Wu Y, Tong F, Tan Y, Zhou J and Kang C: Neuronal STAT3/HIF-1α/PTRF axis-mediated bioenergetic disturbance exacerbates cerebral ischemia-reperfusion injury via PLA2G4A. Theranostics. 12:3196–3216. 2022. View Article : Google Scholar : PubMed/NCBI | |
Song CY, Singh P, Motiwala M, Shin JS, Lew J, Dutta SR, Gonzalez FJ, Bonventre JV and Malik KU: 2-methoxyestradiol ameliorates angiotensin II-induced hypertension by inhibiting cytosolic phospholipase A2α activity in female mice. Hypertension. 78:1368–1381. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jing H, Reed A, Ulanovskaya OA, Grigoleit JS, Herbst DM, Henry CL, Li H, Barbas S, Germain J, Masuda K and Cravatt BF: Phospholipase Cγ2 regulates endocannabinoid and eicosanoid networks in innate immune cells. Proc Natl Acad Sci USA. 118:e21129711182021. View Article : Google Scholar : PubMed/NCBI | |
Sun GY, Geng X, Teng T, Yang B, Appenteng MK, Greenlief CM and Lee JC: Dynamic role of phospholipases A2 in health and diseases in the central nervous system. Cells. 10:29632021. View Article : Google Scholar : PubMed/NCBI | |
Dabral D and van den Bogaart G: The roles of phospholipase A2 in phagocytes. Front Cell Dev Biol. 9:6735022021. View Article : Google Scholar : PubMed/NCBI | |
Zhang HJ, Chen YT, Hu XL, Cai WT, Wang XY, Ni WF and Zhou KL: Functions and mechanisms of cytosolic phospholipase A2 in central nervous system trauma. Neural Regen Res. 18:258–266. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Jones JW, Choi HMC, Sarkar C, Kane MA, Koh EY, Lipinski MM and Wu J: cPLA2 activation contributes to lysosomal defects leading to impairment of autophagy after spinal cord injury. Cell Death Dis. 10:5312019. View Article : Google Scholar : PubMed/NCBI | |
Sarkar C, Jones JW, Hegdekar N, Thayer JA, Kumar A, Faden AI, Kane MA and Lipinski MM: PLA2G4A/cPLA2-mediated lysosomal membrane damage leads to inhibition of autophagy and neurodegeneration after brain trauma. Autophagy. 16:466–485. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hayashi D, Mouchlis VD and Dennis EA: Each phospholipase A2 type exhibits distinct selectivity toward sn-1 ester, alkyl ether, and vinyl ether phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids. 1867:1590672022. View Article : Google Scholar : PubMed/NCBI | |
Kita Y, Shindou H and Shimizu T: Cytosolic phospholipase A2 and lysophospholipid acyltransferases. Biochim Biophys Acta Mol Cell Biol Lipids. 1864:838–845. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Chen Y, Li F, Wu C, Cai W, Ye H, Su H, He M, Yang L, Wang X, et al: Elamipretide alleviates pyroptosis in traumatically injured spinal cord by inhibiting cPLA2-induced lysosomal membrane permeabilization. J Neuroinflammation. 20:62023. View Article : Google Scholar : PubMed/NCBI | |
Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B and Rysz J: Pathophysiology of cardiovascular diseases: New insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines. 10:19382022. View Article : Google Scholar : PubMed/NCBI | |
Hasan S, Ghani N, Zhao X, Good J, Huang A, Wrona HL, Liu J and Liu CJ: Dietary pyruvate targets cytosolic phospholipase A2 to mitigate inflammation and obesity in mice. Protein Cell. 15:661–685. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huwiler A, Feuerherm AJ, Sakem B, Pastukhov O, Filipenko I, Nguyen T and Johansen B: The ω3-polyunsaturated fatty acid derivatives AVX001 and AVX002 directly inhibit cytosolic phospholipase A(2) and suppress PGE(2) formation in mesangial cells. Br J Pharmacol. 167:1691–1701. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bacher S, Meier-Soelch J, Kracht M and Schmitz ML: Regulation of transcription factor NF-κB in its natural habitat: The nucleus. Cells. 10:7532021. View Article : Google Scholar : PubMed/NCBI | |
Aslani M, Mortazavi-Jahromi SS and Mirshafiey A: Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. Int Immunopharmacol. 101:1081722021. View Article : Google Scholar : PubMed/NCBI | |
Donohoe F, Wilkinson M, Baxter E and Brennan DJ: Mitogen-Activated protein kinase (MAPK) and obesity-related cancer. Int J Mol Sci. 21:12412020. View Article : Google Scholar : PubMed/NCBI | |
Sahana TG and Zhang K: Mitogen-activated protein kinase pathway in amyotrophic lateral sclerosis. Biomedicines. 9:9692021. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Zhai L, Zhang S, Zhang Y, Chen L, Hu L, Zhang S and Ding Z: DL-3-n-butylphthalide inhibits platelet activation via inhibition of cPLA2-mediated TXA2 synthesis and phosphodiesterase. Platelets. 26:736–744. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Li X, Xie J, Lv C, Lian F, Zhang S, Duan Y, Zeng Y and Piao X: Gypenoside L and Gypenoside LI Inhibit proliferation in renal cell carcinoma via regulation of the MAPK and arachidonic acid metabolism pathways. Front Pharmacol. 13:8206392022. View Article : Google Scholar : PubMed/NCBI | |
Lou J, Wang X, Zhang H, Yu G, Ding J, Zhu X, Li Y, Wu Y, Xu H, Xu H, et al: Inhibition of PLA2G4E/cPLA2 promotes survival of random skin flaps by alleviating lysosomal membrane permeabilization-induced necroptosis. Autophagy. 18:1841–1863. 2022. View Article : Google Scholar : PubMed/NCBI | |
Peng Z, Chang Y, Fan J, Ji W and Su C: Phospholipase A2 superfamily in cancer. Cancer Lett. 497:165–177. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhang H, Jiang L, Cai W, Kuang J, Geng Y, Xu H, Li Y, Yang L, Cai Y, et al: DADLE promotes motor function recovery by inhibiting cytosolic phospholipase A2 mediated lysosomal membrane permeabilization after spinal cord injury. Br J Pharmacol. 181:712–734. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chang Y, Hsia CW, Chiou KR, Yen TL, Jayakumar T, Sheu JR and Huang WC: Eugenol: A potential modulator of human platelet activation and mouse mesenteric vascular thrombosis via an innovative cPLA2-NF-κB signaling axis. Biomedicines. 12:16892024. View Article : Google Scholar : PubMed/NCBI | |
Khan SA and Ilies MA: The phospholipase A2 superfamily: Structure, isozymes, catalysis, physiologic and pathologic roles. Int J Mol Sci. 24:13532023. View Article : Google Scholar : PubMed/NCBI | |
Elinder LS, Dumitrescu A, Larsson P, Hedin U, Frostegård J and Claesson HE: Expression of phospholipase A2 isoforms in human normal and atherosclerotic arterial wall. Arterioscler Thromb Vasc Biol. 17:2257–2263. 1997. View Article : Google Scholar : PubMed/NCBI | |
Badimon L, Vilahur G, Rocca B and Patrono C: The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis. Cardiovasc Res. 117:2001–2015. 2021. View Article : Google Scholar : PubMed/NCBI | |
Szczuko M, Kozioł I, Kotlęga D, Brodowski J and Drozd A: The role of thromboxane in the course and treatment of ischemic stroke: Review. Int J Mol Sci. 22:116442021. View Article : Google Scholar : PubMed/NCBI | |
Hong HJ, Nam GS and Nam KS: Daidzein inhibits human platelet activation by downregulating thromboxane A2 production and granule release, regardless of COX-1 activity. Int J Mol Sci. 24:119852023. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Yuan Z, Tian X, Xiong X, Guo F, Lin Z and Qin Z: Pimpinellin inhibits collagen-induced platelet aggregation and activation through inhibiting granule secretion and PI3K/Akt pathway. Front Pharmacol. 12:7063632021. View Article : Google Scholar : PubMed/NCBI | |
Bertheloot D, Latz E and Franklin BS: Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol Immunol. 18:1106–1121. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez JP, Leiguez E, Guijas C, Lomonte B, Gutiérrez JM, Teixeira C, Balboa MA and Balsinde J: A lipidomic perspective of the action of group IIA secreted phospholipase A2 on human monocytes: LIPID droplet biogenesis and activation of cytosolic phospholipase A2α. Biomolecules. 10:8912020. View Article : Google Scholar : PubMed/NCBI | |
Paloschi MV, Lopes JA, Boeno CN, Silva MDS, Evangelista JR, Pontes AS, da Silva Setúbal S, Rego CMA, Néry NM, Ferreira AA, et al: Cytosolic phospholipase A2-α participates in lipid body formation and PGE2 release in human neutrophils stimulated with an l-amino acid oxidase from calloselasma rhodostoma venom. Sci Rep. 10:109762020. View Article : Google Scholar : PubMed/NCBI | |
Boi R, Ebefors K, Henricsson M, Johansson A, Borén J and Nyström J: MO614: Modified lipid metabolism and cytosolic phospholipase A2 activation in mesangial cells under pro-inflammatory conditions. Nephrol Dial Transplant. May 3–2022.(Epub ahead of print). doi: 10.1093/ndt/gfac076.007, 2022. View Article : Google Scholar | |
Bayır H, Anthonymuthu TS, Tyurina YY, Patel SJ, Amoscato AA, Lamade AM, Yang Q, Vladimirov GK, Philpott CC and Kagan VE: Achieving life through death: Redox biology of lipid peroxidation in ferroptosis. Cell Chem Biol. 27:387–408. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li D, Chen A, Lan T, Zou Y, Zhao L, Yang P, Qu H, Wei L, Varghese Z, Moorhead JF, et al: SCAP knockdown in vascular smooth muscle cells alleviates atherosclerosis plaque formation via up-regulating autophagy in ApoE-/- mice. FASEB J. 33:3437–3450. 2019. View Article : Google Scholar : PubMed/NCBI | |
Canty JM Jr: Myocardial injury, troponin release, and cardiomyocyte death in brief ischemia, failure, and ventricular remodeling. Am J Physiol Heart Circ Physiol. 323:H1–H15. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pesce M, Duda GN, Forte G, Girao H, Raya A, Roca-Cusachs P, Sluijter JPG, Tschöpe C and Van Linthout S: Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat Rev Cardiol. 20:309–324. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Chen H, Gao J, Liu Y, Li J and Wang J: Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol. 136:27–41. 2019. View Article : Google Scholar : PubMed/NCBI | |
Naik MU, Patel P, Derstine R, Turaga R, Chen X, Golla K, Neeves KB, Ichijo H and Naik UP: Ask1 regulates murine platelet granule secretion, thromboxane A2 generation, and thrombus formation. Blood. 129:1197–1209. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yue J and López JM: Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci. 21:23462020. View Article : Google Scholar : PubMed/NCBI | |
Xuan C, Jin C, Jin Z and Chi Y: The protective effects of glutamine against bronchopulmonary dysplasia are associated with MKP-1/MAPK/cPLA2 signalingmediated NF-kappaB pathway. Gen Physiol Biophys. 42:229–239. 2023. View Article : Google Scholar : PubMed/NCBI | |
Davidovich P, Higgins CA, Najda Z, Longley DB and Martin SJ: cFLIPL acts as a suppressor of TRAIL- and Fas-initiated inflammation by inhibiting assembly of caspase-8/FADD/RIPK1 NF-κB-activating complexes. Cell Rep. 42:1134762023. View Article : Google Scholar : PubMed/NCBI | |
Mustafa M, Ahmad R, Tantry IQ, Ahmad W, Siddiqui S, Alam M, Abbas K, Moinuddin, Hassan MI, Habib S and Islam S: Apoptosis: A comprehensive overview of signaling pathways, morphological changes, and physiological significance and therapeutic implications. Cells. 13:18382024. View Article : Google Scholar : PubMed/NCBI | |
Whitaker RH and Cook JG: Stress relief techniques: p38 MAPK determines the balance of cell cycle and apoptosis pathways. Biomolecules. 11:14442021. View Article : Google Scholar : PubMed/NCBI | |
Wang A, Jiang H, Liu Y, Chen J, Zhou X, Zhao C, Chen X and Lin M: Rhein induces liver cancer cells apoptosis via activating ROS-dependent JNK/Jun/caspase-3 signaling pathway. J Cancer. 11:500–507. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ke Z, Lu J, Zhu J, Yang Z, Jin Z and Yuan L: Down-regulation of lincRNA-EPS regulates apoptosis and autophagy in BCG-infected RAW264.7 macrophages via JNK/MAPK signaling pathway. Infect Genet Evol. 77:1040772020. View Article : Google Scholar : PubMed/NCBI | |
Zheng N, Li H, Wang X, Zhao Z and Shan D: Oxidative stress-induced cardiomyocyte apoptosis is associated with dysregulated Akt/p53 signaling pathway. J Recept Signal Transduct Res. 40:599–604. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zou H and Liu G: Inhibition of endoplasmic reticulum stress through activation of MAPK/ERK signaling pathway attenuates hypoxia-mediated cardiomyocyte damage. J Recept Signal Transduct Res. 41:532–537. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Na L, Li Y and Chen L: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 11:1572020. View Article : Google Scholar : PubMed/NCBI | |
Qin W, Cao L and Massey IY: Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol Cell Biochem. 476:4045–4059. 2021. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Wang Y, Zhou C, Mei W and Zeng C: PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front Oncol. 12:8191282022. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Tang H, Hay N, Xu J and Ye RD: Akt isoforms differentially regulate neutrophil functions. Blood. 115:4237–4246. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lin WC, Chuang YC, Chang YS, Lai MD, Teng YN, Su IJ, Wang CC, Lee KH and Hung JH: Endoplasmic reticulum stress stimulates p53 expression through NF-κB activation. PLoS One. 7:e391202012. View Article : Google Scholar : PubMed/NCBI | |
Cheng W, Cui C, Liu G, Ye C, Shao F, Bagchi AK, Mehta JL and Wang X: NF-κB, A potential therapeutic target in cardiovascular diseases. Cardiovasc Drugs Ther. 37:571–584. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Yao S, Yang H, Liu S and Wang Y: Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023. View Article : Google Scholar : PubMed/NCBI | |
Zhang XW, Lv XX, Zhou JC, Jin CC, Qiao LY and Hu ZW: Autophagic flux detection: Significance and methods involved. Adv Exp Med Biol. 1208:131–173. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mi S, Huang F, Jiao M, Qian Z, Han M, Miao Z and Zhan H: Inhibition of MEG3 ameliorates cardiomyocyte apoptosis and autophagy by regulating the expression of miRNA-129-5p in a mouse model of heart failure. Redox Rep. 28:22246072023. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Liu Z, Yu XY, Xu S and Luo J: Autophagy and cardiac diseases: Therapeutic potential of natural products. Med Res Rev. 41:314–341. 2021. View Article : Google Scholar : PubMed/NCBI | |
Che Y, Wang Z, Yuan Y, Zhou H, Wu H, Wang S and Tang Q: By restoring autophagic flux and improving mitochondrial function, corosolic acid protects against Dox-induced cardiotoxicity. Cell Biol Toxicol. 38:451–467. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Su H and Liu J: Protective effect of natural medicinal plants on cardiomyocyte injury in heart failure: Targeting the dysregulation of mitochondrial homeostasis and mitophagy. Oxid Med Cell Longev. 2022:36170862022.PubMed/NCBI | |
Gao J, Chen X, Shan C, Wang Y, Li P and Shao K: Autophagy in cardiovascular diseases: Role of noncoding RNAs. Mol Ther Nucleic Acids. 23:101–118. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wang J, Cretoiu D, Li G and Xiao J: Exercise-mediated regulation of autophagy in the cardiovascular system. J Sport Health Sci. 9:203–210. 2020. View Article : Google Scholar : PubMed/NCBI | |
Miao J, Zang X, Cui X and Zhang J: Autophagy, hyperlipidemia, and atherosclerosis. Adv Exp Med Biol. 1207:237–264. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yun HR, Jo YH, Kim J, Shin Y, Kim SS and Choi TG: Roles of autophagy in oxidative stress. Int J Mol Sci. 21:32892020. View Article : Google Scholar : PubMed/NCBI | |
Frias MA, Hatipoglu A and Foster DA: Regulation of mTOR by phosphatidic acid. Trends Endocrinol Metab. 34:170–180. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sukumaran P, Da Conceicao VN, Sun Y, Ahamad N, Saraiva LR, Selvaraj S and Singh BB: Calcium signaling regulates autophagy and apoptosis. Cells. 10:21252021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Yang Q, Chen S, Li Z and Fu L: Targeting VPS34 in autophagy: An update on pharmacological small-molecule compounds. Eur J Med Chem. 256:1154672023. View Article : Google Scholar : PubMed/NCBI | |
Foster KG and Fingar DC: Mammalian target of rapamycin (mTOR): Conducting the cellular signaling symphony. J Biol Chem. 285:14071–14077. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gao G, Chen W, Yan M, Liu J, Luo H, Wang C and Yang P: Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int J Mol Med. 45:195–209. 2020.PubMed/NCBI | |
Jiang S, Yang H and Li M: Emerging roles of lysophosphatidic acid in macrophages and inflammatory diseases. Int J Mol Sci. 24:125242023. View Article : Google Scholar : PubMed/NCBI | |
Wang ML, Zhang YJ, He DL, Li T, Zhao MM and Zhao LM: Inhibition of PLA2G4A attenuated valproic acid-induced lysosomal membrane permeabilization and restored impaired autophagic flux: Implications for hepatotoxicity. Biochem Pharmacol. 227:1164382024. View Article : Google Scholar : PubMed/NCBI | |
Yang HL, Lai ZZ, Shi JW, Zhou WJ, Mei J, Ye JF, Zhang T, Wang J, Zhao JY, Li DJ and Li MQ: A defective lysophosphatidic acid-autophagy axis increases miscarriage risk by restricting decidual macrophage residence. Autophagy. 18:2459–2480. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ballabio A and Bonifacino JS: Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol. 21:101–118. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kotlyarov S: Immune function of endothelial cells: Evolutionary aspects, molecular biology and role in atherogenesis. Int J Mol Sci. 23:97702022. View Article : Google Scholar : PubMed/NCBI | |
Gusev E and Sarapultsev A: Atherosclerosis and inflammation: Insights from the theory of general pathological processes. Int J Mol Sci. 24:79102023. View Article : Google Scholar : PubMed/NCBI | |
Singh P, Song CY, Dutta SR, Pingili A, Shin JS, Gonzalez FJ, Bonventre JV and Malik KU: 6β-Hydroxytestosterone promotes angiotensin II-induced hypertension via enhanced cytosolic phospholipase A2α activity. Hypertension. 78:1053–1066. 2021. View Article : Google Scholar : PubMed/NCBI | |
Passos LSA, Nunes MCP and Aikawa E: Rheumatic heart valve disease pathophysiology and underlying mechanisms. Front Cardiovasc Med. 7:6127162021. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Gao Y, Wu D and Zhang D: The relationship of lipoprotein-associated phospholipase A2 activity with the seriousness of coronary artery disease. BMC Cardiovasc Disord. 20:2952020. View Article : Google Scholar : PubMed/NCBI | |
Verdoia M, Rolla R, Gioscia R, Rognoni A and De Luca G; Novara Atherosclerosis Study Group (NAS), : Lipoprotein associated- phospholipase A2 in STEMI vs. NSTE-ACS patients: A marker of cardiovascular atherosclerotic risk rather than thrombosis. J Thromb Thrombolysis. 56:37–44. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yigit E, Deger O, Korkmaz K, Yigit MH, Uydu HA, Mercantepe T and Demir S: Propolis reduces inflammation and dyslipidemia caused by high-cholesterol diet in mice by lowering ADAM10/17 activities. Nutrients. 16:18612024. View Article : Google Scholar : PubMed/NCBI | |
Ashcroft FJ, Mahammad N, Flatekvål HM, Feuerherm AJ and Johansen B: cPLA2α enzyme inhibition attenuates inflammation and keratinocyte proliferation. Biomolecules. 10:14022020. View Article : Google Scholar : PubMed/NCBI | |
Schanstra JP, Luong TTD, Makridakis M, Van Linthout S, Lygirou V, Latosinska A, Alesutan I, Boehme B, Schelski N, Von Lewinski D, et al: Systems biology identifies cytosolic PLA2 as a target in vascular calcification treatment. JCI Insight. 4:e1256382019. View Article : Google Scholar : PubMed/NCBI | |
Huang JP, Cheng ML, Wang CH, Huang SS, Hsieh PS, Chang CC, Kuo CY, Chen KH and Hung LM: Therapeutic potential of cPLA2 inhibitor to counteract dilated-cardiomyopathy in cholesterol-treated H9C2 cardiomyocyte and MUNO rat. Pharmacol Res. 160:1052012020. View Article : Google Scholar : PubMed/NCBI |