
Mechanisms and preventive measures of ALDH2 in ischemia‑reperfusion injury: Ferroptosis as a novel target (Review)
- Authors:
- Liang Han
- Wen Zhai
-
Affiliations: Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China - Published online on: February 21, 2025 https://doi.org/10.3892/mmr.2025.13470
- Article Number: 105
-
Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Panisello-Rosello A, Lopez A, Folch-Puy E, Carbonell T, Rolo A, Palmeira C, Adam R, Net M and Roselló-Catafau J: Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update. World J Gastroenterol. 24:2984–2994. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R and Yuan J: Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 9:122024. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Zhang J, Yang H, Linghu K and Xu M: SNHG3/miR-330-5p/HSD11B1 alleviates myocardial ischemia-reperfusion injury by regulating the ERK/p38 signaling pathway. Protein Pept Lett. 30:699–708. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Xiong Y, Luo J, Hu Q, Lan J, Zou Y, Ma Q, Yao H, Liu Z, Zhong Z, et al: Aldehyde dehydrogenase 2 protects the kidney from Ischemia-reperfusion injury by suppressing the I κ B α/NF-κ B/IL-17C pathway. Oxid Med Cell Longev. 2023:22640302023. View Article : Google Scholar : PubMed/NCBI | |
Diao M, Xu J, Wang J, Zhang M, Wu C, Hu X, Zhu Y, Zhang M and Hu W: Alda-1, an activator of ALDH2, improves postresuscitation cardiac and neurological outcomes by inhibiting pyroptosis in swine. Neurochem Res. 47:1097–1099. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gao R, Lv C, Qu Y, Yang H, Hao C, Sun X, Hu X, Yang Y and Tang Y: Remote ischemic conditioning mediates cardio-protection after myocardial ischemia/reperfusion injury by reducing 4-HNE levels and regulating autophagy via the ALDH2/SIRT3/HIF1alpha signaling pathway. J Cardiovasc Transl Res. 17:169–182. 2024.PubMed/NCBI | |
Kang P, Wang J, Fang D, Fang T, Yu Y, Zhang W, Shen L, Li Z, Wang H, Ye H and Gao Q: Activation of ALDH2 attenuates high glucose induced rat cardiomyocyte fibrosis and necroptosis. Free Radic Biol Med. 146:198–210. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li M, Xu M, Li J, Chen L, Xu D, Tong Y, Zhang J, Wu H, Kong X and Xia Q: Alda-1 ameliorates liver Ischemia-Reperfusion injury by activating aldehyde dehydrogenase 2 and enhancing autophagy in mice. J Immunol Res. 2018:98071392018. View Article : Google Scholar : PubMed/NCBI | |
Lin D, Xiang T, Qiu Q, Leung J, Xu J, Zhou W, Hu Q, Lan J, Liu Z, Zhong Z, et al: Aldehyde dehydrogenase 2 regulates autophagy via the Akt-mTOR pathway to mitigate renal ischemia-reperfusion injury in hypothermic machine perfusion. Life Sci. 253:1177052020. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Tao JP, Li M, Peng J, Zhou C, Ouyang J and Si YY: Mechanism of ALDH2 improves the neuronal damage caused by hypoxia/reoxygenation. Eur Rev Med Pharmacol Sci. 26:2712–2720. 2022.PubMed/NCBI | |
Liu Z, Ye S, Zhong X, Wang W, Lai CH, Yang W, Yue P, Luo J, Huang X, Zhong Z, et al: Pretreatment with the ALDH2 activator Alda-1 protects rat livers from ischemia/reperfusion injury by inducing autophagy. Mol Med Rep. 22:2373–2385. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma LL, Ding ZW, Yin PP, Wu J, Hu K, Sun AJ, Zou YZ and Ge JB: Hypertrophic preconditioning cardioprotection after myocardial ischaemia/reperfusion injury involves ALDH2-dependent metabolism modulation. Redox Biol. 43:1019602021. View Article : Google Scholar : PubMed/NCBI | |
Pan G, Roy B and Palaniyandi SS: Diabetic aldehyde dehydrogenase 2 Mutant (ALDH2*2) mice are more susceptible to cardiac Ischemic-Reperfusion injury due to 4-Hydroxy-2-Nonenal induced coronary endothelial cell damage. J Am Heart Assoc. 10:e0211402021. View Article : Google Scholar : PubMed/NCBI | |
Papatheodorou I, Galatou E, Panagiotidis GD, Ravingerova T and Lazou A: Cardioprotective effects of PPARbeta/delta activation against ischemia/reperfusion injury in rat heart are associated with ALDH2 upregulation, amelioration of oxidative stress and preservation of mitochondrial energy production. Int J Mol Sci. 22:e0211402021. View Article : Google Scholar | |
Qu Y, Liu Y and Zhang H: ALDH2 activation attenuates oxygen-glucose deprivation/reoxygenation-induced cell apoptosis, pyroptosis, ferroptosis and autophagy. Clin Transl Oncol. 25:3203–1326. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sidramagowda Patil S, Hernandez-Cuervo H, Fukumoto J, Krishnamurthy S, Lin M, Alleyn M, Breitzig M, Narala VR, Soundararajan R, Lockey RF, et al: Alda-1 attenuates hyperoxia-induced acute lung injury in mice. Front Pharmacol. 11:5979422020. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Gao R, Li W, Zhao Y, Yang H, Chen H, Jiang H, Dong Z, Hu J, Liu J, et al: Alda-1 treatment promotes the therapeutic effect of mitochondrial transplantation for myocardial ischemia-reperfusion injury. Bioact Mater. 6:2058–2069. 2021.PubMed/NCBI | |
Tan X, Chen YF, Zou SY, Wang WJ, Zhang NN, Sun ZY, Xian W, Li XR, Tang B, Wang HJ, et al: ALDH2 attenuates ischemia and reperfusion injury through regulation of mitochondrial fusion and fission by PI3K/AKT/mTOR pathway in diabetic cardiomyopathy. Free Radic Biol Med. 195:219–230. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Xu S, Diao M, Wang J, Zhang G and Xu J: Alda-1 treatment alleviates lung injury after cardiac arrest and resuscitation in swine. Shock. 58:464–469. 2022.PubMed/NCBI | |
Xu T, Guo J, Wei M, Wang J, Yang K, Pan C, Pang J, Xue L, Yuan Q, Xue M, et al: Aldehyde dehydrogenase 2 protects against acute kidney injury by regulating autophagy via the Beclin-1 pathway. JCI Insight. 6:e1381832021.PubMed/NCBI | |
Yoval-Sanchez B, Calleja LF, de la Luz Hernandez-Esquivel M and Rodriguez-Zavala JS: Piperlonguminine a new mitochondrial aldehyde dehydrogenase activator protects the heart from ischemia/reperfusion injury. Biochim Biophys Acta Gen Subj. 1864:1296842020. View Article : Google Scholar : PubMed/NCBI | |
Yu Q, Gao J, Shao X, Lu W, Chen L and Jin L: The Effects of Alda-1 treatment on renal and intestinal injuries after cardiopulmonary resuscitation in pigs. Front Med (Lausanne). 9:8924722022. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Xue MY, Liu BS, Wang WJ, Fan XH, Zheng BY, Yuan QH, Xu F, Wang JL and Chen YG: Aldehyde dehydrogenase 2 preserves mitochondrial morphology and attenuates hypoxia/reoxygenation-induced cardiomyocyte injury. World J Emerg Med. 11:246–254. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZX, Li H, He JS, Chu HJ, Zhang XT and Yin L: Remote ischemic postconditioning alleviates myocardial ischemia/reperfusion injury by up-regulating ALDH2. Eur Rev Med Pharmacol Sci. 22:6475–6484. 2018.PubMed/NCBI | |
Zhou T, Wang X, Wang K, Lin Y, Meng Z, Lan Q, Jiang Z, Chen J, Lin Y, Liu X, et al: Activation of aldehyde dehydrogenase-2 improves ischemic random skin flap survival in rats. Front Immunol. 14:11276102023. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Ferreira JC, Gross ER and Mochly-Rosen D: Targeting aldehyde dehydrogenase 2: New therapeutic opportunities. Physiol Rev. 94:1–34. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lamb RJ, Griffiths K, Lip GYH, Sorokin V, Frenneaux MP, Feelisch M and Madhani M: ALDH2 polymorphism and myocardial infarction: From alcohol metabolism to redox regulation. Pharmacol Ther. 259:1086662024. View Article : Google Scholar : PubMed/NCBI | |
Yoshida A, Hsu LC and Yasunami M: Genetics of human alcohol-metabolizing enzymes. Prog Nucleic Acid Res Mol Biol. 40:255–287. 1991. View Article : Google Scholar : PubMed/NCBI | |
Mali VR and Palaniyandi SS: Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radic Res. 48:251–263. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schneider C, Porter NA and Brash AR: Routes to 4-hydroxynonenal: Fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem. 283:15539–15543. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kimura M, Yokoyama A and Higuchi S: Aldehyde dehydrogenase-2 as a therapeutic target. Expert Opin Ther Targets. 23:955–966. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ke K, Li L, Lu C, Zhu Q, Wang Y, Mou Y, Wang H and Jin W: The crosstalk effect between ferrous and other ions metabolism in ferroptosis for therapy of cancer. Front Oncol. 12:9160822022. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Ardehali H, Min J and Wang F: The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 20:7–23. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiang Q, Yi X, Zhu XH, Wei X and Jiang DS: Regulated cell death in myocardial ischemia-reperfusion injury. Trends Endocrinol Metab. 35:219–234. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Pang J, Qin D, Li R, Zou D, Chi K, Wu W, Rui H, Yu H, Zhu W, et al: Deubiquitinase OTUD5 as a novel protector against 4-HNE-triggered ferroptosis in myocardial ischemia/reperfusion injury. Adv Sci (Weinh). 10:e23018522023. View Article : Google Scholar : PubMed/NCBI | |
Bi Y, Liu S, Qin X, Abudureyimu M, Wang L, Zou R, Ajoolabady A, Zhang W, Peng H, Ren J and Zhang Y: FUNDC1 interacts with GPx4 to govern hepatic ferroptosis and fibrotic injury through a mitophagy-dependent manner. J Adv Res. 55:45–60. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Feng D, Shi X, Wei Q and Yang L: The potential role of mitochondrial acetaldehyde dehydrogenase 2 in urological cancers from the perspective of ferroptosis and cellular senescence. Front Cell Dev Biol. 10:8501452022. View Article : Google Scholar : PubMed/NCBI | |
Droge W: Free radicals in the physiological control of cell function. Physiol Rev. 82:47–95. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Sun L and Mochly-Rosen D: Mitochondrial aldehyde dehydrogenase and cardiac diseases. Cardiovasc Res. 88:51–57. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wilson DF and Matschinsky FM: Ethanol metabolism: The good, the bad, and the ugly. Med Hypotheses. 140:1096382020. View Article : Google Scholar : PubMed/NCBI | |
Hink U, Daiber A, Kayhan N, Trischler J, Kraatz C, Oelze M, Mollnau H, Wenzel P, Vahl CF, Ho KK, et al: Oxidative inhibition of the mitochondrial aldehyde dehydrogenase promotes nitroglycerin tolerance in human blood vessels. J Am Coll Cardiol. 50:2226–2232. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Yuan Q, Cao S, Cui S, Xue L, Song X, Li Z, Xu R, Yuan Q and Li R: Aldehyde dehydrogenase 2 inhibited oxidized LDL-induced NLRP3 inflammasome priming and activation via attenuating oxidative stress. Biochem Biophys Res Commun. 529:998–1004. 2020. View Article : Google Scholar : PubMed/NCBI | |
Moldovan L and Moldovan NI: Oxygen free radicals and redox biology of organelles. Histochem Cell Biol. 122:395–412. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bielski BH, Arudi RL and Sutherland MW: A study of the reactivity of HO2/O2-with unsaturated fatty acids. J Biol Chem. 258:4759–4761. 1983. View Article : Google Scholar : PubMed/NCBI | |
Browne RW and Armstrong D: HPLC analysis of lipid-derived polyunsaturated fatty acid peroxidation products in oxidatively modified human plasma. Clin Chem. 46:829–836. 2000. View Article : Google Scholar : PubMed/NCBI | |
Schneider C, Boeglin WE, Yin H, Porter NA and Brash AR: Intermolecular peroxyl radical reactions during autoxidation of hydroxy and hydroperoxy arachidonic acids generate a novel series of epoxidized products. Chem Res Toxicol. 21:895–903. 2008. View Article : Google Scholar : PubMed/NCBI | |
Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, Thompson DC and Vasiliou V: Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med. 56:89–101. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Hao Y, Piao X and Gu X: Aldehyde dehydrogenase 2 as a therapeutic target in oxidative stress-related diseases: Post-translational modifications deserve more attention. Int J Mol Sci. 23:26822022. View Article : Google Scholar : PubMed/NCBI | |
Breitzig M, Bhimineni C, Lockey R and Kolliputi N: 4-Hydroxy-2-nonenal: A critical target in oxidative stress? Am J Physiol Cell Physiol. 311:C537–C543. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schaur RJ, Siems W, Bresgen N and Eckl PM: 4-Hydroxy-nonenal-a bioactive lipid peroxidation product. Biomolecules. 5:2247–337. 2015. View Article : Google Scholar : PubMed/NCBI | |
Forman HJ: Reactive oxygen species and alpha, beta-unsaturated aldehydes as second messengers in signal transduction. Ann N Y Acad Sci. 1203:35–44. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shoeb M, Ansari NH, Srivastava SK and Ramana KV: 4-Hydroxynonenal in the pathogenesis and progression of human diseases. Curr Med Chem. 21:230–237. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang H and Forman HJ: Signaling pathways involved in phase II gene induction by alpha, beta-unsaturated aldehydes. Toxicol Ind Health. 25:269–278. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dalleau S, Baradat M, Gueraud F and Huc L: Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ. 20:1615–1630. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xue Z, Zhao K, Sun Z, Wu C, Yu B, Kong D and Xu B: Isorhapontigenin ameliorates cerebral ischemia/reperfusion injury via modulating Kinase Cepsilon/Nrf2/HO-1 signaling pathway. Brain Behav. 11:e021432021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li B, Liu G, Han Q, Diao Y and Liu J: Corilagin attenuates intestinal ischemia/reperfusion injury in mice by inhibiting ferritinophagy-mediated ferroptosis through disrupting NCOA4-ferritin interaction. Life Sci. 334:1221762023. View Article : Google Scholar : PubMed/NCBI | |
Endo J, Sano M, Katayama T, Hishiki T, Shinmura K, Morizane S, Matsuhashi T, Katsumata Y, Zhang Y, Ito H, et al: Metabolic remodeling induced by mitochondrial aldehyde stress stimulates tolerance to oxidative stress in the heart. Circ Res. 105:1118–1127. 2009. View Article : Google Scholar : PubMed/NCBI | |
Esterbauer H, Schaur RJ and Zollner H: Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 11:81–128. 1991. View Article : Google Scholar : PubMed/NCBI | |
Giera M, Lingeman H and Niessen WM: Recent advancements in the LC- and GC-Based analysis of malondialdehyde (MDA): A brief overview. Chromatographia. 75:433–440. 2012. View Article : Google Scholar : PubMed/NCBI | |
Esterbauer H and Zollner H: Methods for determination of aldehydic lipid peroxidation products. Free Radic Biol Med. 7:197–203. 1989. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Zhang Y, Bu G and Fang L: Renal denervation improves mitochondrial oxidative stress and cardiac hypertrophy through inactivating SP1/BACH1-PACS2 signaling. Int Immunopharmacol. 141:1127782024. View Article : Google Scholar : PubMed/NCBI | |
Tsikas D: Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem. 524:13–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lankin VZ, Tikhaze AK and Melkumyants AM: Malondialdehyde as an important key factor of molecular mechanisms of vascular wall damage under heart diseases development. Int J Mol Sci. 24:1282022. View Article : Google Scholar : PubMed/NCBI | |
Busch CJ and Binder CJ: Malondialdehyde epitopes as mediators of sterile inflammation. Biochim Biophys Acta Mol Cell Biol Lipids. 1862:398–406. 2017. View Article : Google Scholar : PubMed/NCBI | |
Agadjanyan ZS, Dmitriev LF and Dugin SF: A new role of phosphoglucose isomerase. Involvement of the glycolytic enzyme in aldehyde metabolism. Biochemistry (Mosc). 70:1251–1255. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wu X, Luo J, Wang X, Guo H, Feng D, Zhao L, Bai H, Song M, Liu X, et al: Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after Ischemia-reperfusion by inhibiting NF-κB phosphorylation. Front Immunol. 10:24082019. View Article : Google Scholar : PubMed/NCBI | |
Qi D, Chen P, Bao H, Zhang L, Sun K, Song S and Li T: Dimethyl fumarate protects against hepatic ischemia-reperfusion injury by alleviating ferroptosis via the NRF2/SLC7A11/HO-1 axis. Cell Cycle. 22:818–828. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang IC, Lin JH, Lee WS, Liu CH, Lin TY and Yang KT: Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocytes. Int J Cardiol. 375:74–86. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cao Z, Qin H, Huang Y, Zhao Y, Chen Z, Hu J and Gao Q: Crosstalk of pyroptosis, ferroptosis, and mitochondrial aldehyde dehydrogenase 2-related mechanisms in sepsis-induced lung injury in a mouse model. Bioengineered. 13:4810–4820. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yoval-Sanchez B and Rodriguez-Zavala JS: Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem Res Toxicol. 25:722–729. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Zhao Q, Ye F, Huang CY, Chen WM and Huang WQ: Alda-1, an ALDH2 activator, protects against hepatic ischemia/reperfusion injury in rats via inhibition of oxidative stress. Free Radic Res. 52:629–638. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma XH, Liu JH, Liu CY, Sun WY, Duan WJ, Wang G, Kurihara H, He RR, Li YF, Chen Y, et al: ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal Transduct Target Ther. 7:2882022. View Article : Google Scholar : PubMed/NCBI | |
Yan HF, Tuo QZ, Yin QZ and Lei P: The pathological role of ferroptosis in ischemia/reperfusion-related injury. Zool Res. 41:220–230. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Li Y, Zhang S and Zhou X: Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 11:3052–3059. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Kang R and Tang D: Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 289:7038–7050. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Li Z, Li B, Liu W, Zhang S, Qiu K and Zhu W: Relationship between ferroptosis and mitophagy in cardiac ischemia reperfusion injury: A mini-review. PeerJ. 11:e149522023. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Zhang X, Yang M and Dong X: Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 31:e19041972019. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E49675. 2016. View Article : Google Scholar : PubMed/NCBI | |
Haeggstrom JZ and Funk CD: Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease. Chem Rev. 111:5866–5898. 2011. View Article : Google Scholar : PubMed/NCBI | |
Braughler JM, Duncan LA and Chase RL: The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. J Biol Chem. 261:10282–10289. 1986. View Article : Google Scholar : PubMed/NCBI | |
Matsuyama M, Nakatani T, Hase T, Kawahito Y, Sano H, Kawamura M and Yoshimura R: The expression of cyclooxygenases and lipoxygenases in renal ischemia-reperfusion injury. Transplant Proc. 36:1939–1942. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Jike Y, Liu K, Gan F, Zhang K, Xie M, Zhang J, Chen C, Zou X, Jiang X, et al: Exosome-mediated miR-144-3p promotes ferroptosis to inhibit osteosarcoma proliferation, migration, and invasion through regulating ZEB1. Mol Cancer. 22:1132023. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Gao W, Wang Z, Jian H, Peng L, Yu X, Xue P, Peng W, Li K and Zeng P: Polyphyllin I induced ferroptosis to suppress the progression of hepatocellular carcinoma through activation of the mitochondrial dysfunction via Nrf2/HO-1/GPX4 axis. Phytomedicine. 122:1551352024. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Huang J, Yu C, Liu J, Gao W, Li J, Song X, Zhou Z, Li C, Xie Y, et al: A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis. Nat Commun. 13:63182022. View Article : Google Scholar : PubMed/NCBI | |
Jang EJ, Jeong HO, Park D, Kim DH, Choi YJ, Chung KW, Park MH, Yu BP and Chung HY: Src Tyrosine kinase activation by 4-hydroxynonenal upregulates p38, ERK/AP-1 signaling and COX-2 expression in YPEN-1 Cells. PLoS One. 10:e01292442015. View Article : Google Scholar : PubMed/NCBI | |
Lee J and Hyun DH: The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases. Antioxidants (Basel). 12:9182023. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto HD, Ikeda M, Ide T, Tadokoro T, Furusawa S, Abe K, Ishimaru K, Enzan N, Sada M, Yamamoto T, et al: Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC Basic Transl Sci. 7:800–819. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ito J, Omiya S, Rusu MC, Ueda H, Murakawa T, Tanada Y, Abe H, Nakahara K, Asahi M, Taneike M, et al: Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice. Elife. 10:e621742021. View Article : Google Scholar : PubMed/NCBI | |
Tang LJ, Zhou YJ, Xiong XM, Li NS, Zhang JJ, Luo XJ and Peng J: Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic Biol Med. 162:339–352. 2021. View Article : Google Scholar : PubMed/NCBI | |
Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S, Haupt Y, Denoyer D, Adlard PA, Bush AI and Cater MA: Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol. 14:100–115. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li W, Li W, Wang Y, Leng Y and Xia Z: Inhibition of DNMT-1 alleviates ferroptosis through NCOA4 mediated ferritinophagy during diabetes myocardial ischemia/reperfusion injury. Cell Death Discov. 7:2672021. View Article : Google Scholar : PubMed/NCBI | |
Fan Z, Cai L, Wang S, Wang J and Chen B: Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis. Front Pharmacol. 12:6289882021. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Jiao H, Yue Y, He K, Jin Y, Zhang J, Zhang J, Wei Y, Luo H, Hao Z, et al: Ubiquitin ligase E3 HUWE1/MULE targets transferrin receptor for degradation and suppresses ferroptosis in acute liver injury. Cell Death Differ. 29:1705–1718. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bresgen N, Jaksch H, Lacher H, Ohlenschlager I, Uchida K and Eckl PM: Iron-mediated oxidative stress plays an essential role in ferritin-induced cell death. Free Radic Biol Med. 48:1347–1357. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Sun L, Wu W, Wu J, Sun Z and Ren J: USP22 Protects against myocardial Ischemia-Reperfusion Injury via the SIRT1-p53/SLC7A11-dependent inhibition of Ferroptosis-induced cardiomyocyte death. Front Physiol. 11:5513182020. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279.e25. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Sun K, Yu S, Luo J, Guo J, Lin J, Wang G, Guo Z, Ye Y and Guo F: Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Translat. 27:33–43. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Jia M, Wang Y, Wang Q and Wu J: Cell death mechanisms in cerebral Ischemia-Reperfusion injury. Neurochem Res. 47:3525–3542. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kalogeris T, Baines CP, Krenz M and Korthuis RJ: Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 298:229–317. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Tuo QZ and Lei P: Iron, ferroptosis, and ischemic stroke. J Neurochem. 165:487–520. 2023. View Article : Google Scholar : PubMed/NCBI | |
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI | |
Green DR and Llambi F: Cell death signaling. Cold Spring Harb Perspect Biol. 7:a0060802015. View Article : Google Scholar : PubMed/NCBI | |
Pang Q, Zhao Y, Chen X, Zhao K, Zhai Q and Tu F: Apigenin protects the brain against Ischemia/Reperfusion injury via Caveolin-1/VEGF in vitro and in vivo. Oxid Med Cell Longev. 2018:70172042018. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Li J, Yang Y, Wang X, Zhang Z and Zhang L: Neuronal apoptosis in cerebral ischemia/reperfusion area following electrical stimulation of fastigial nucleus. Neural Regen Res. 9:727–734. 2014. View Article : Google Scholar : PubMed/NCBI | |
Teijido O and Dejean L: Upregulation of Bcl2 inhibits apoptosis-driven BAX insertion but favors BAX relocalization in mitochondria. FEBS Lett. 584:3305–3310. 2010. View Article : Google Scholar : PubMed/NCBI | |
Andreka G, Vertesaljai M, Szantho G, Font G, Piroth Z, Fontos G, Juhasz ED, Szekely L, Szelid Z, Turner MS, et al: Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs. Hear. 93:749–752. 2007. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guerrero-Mauvecin J, Villar-Gomez N, Rayego-Mateos S, Ramos AM, Ruiz-Ortega M, Ortiz A and Sanz AB: Regulated necrosis role in inflammation and repair in acute kidney injury. Front Immunol. 14:13249962023. View Article : Google Scholar : PubMed/NCBI | |
Annibaldi A and Meier P: Checkpoints in TNF-Induced cell death: Implications in inflammation and cancer. Trends Mol Med. 24:49–65. 2018. View Article : Google Scholar : PubMed/NCBI | |
Seo J, Nam YW, Kim S, Oh DB and Song J: Necroptosis molecular mechanisms: Recent findings regarding novel necroptosis regulators. Exp Mol Med. 53:1007–117. 2021. View Article : Google Scholar : PubMed/NCBI | |
Luedde T, Kaplowitz N and Schwabe RF: Cell death and cell death responses in liver disease: Mechanisms and clinical relevance. Gastroenterology. 147:765–83.e4. 2014. View Article : Google Scholar : PubMed/NCBI | |
Koike A, Hanatani M and Fujimori K: Pan-caspase inhibitors induce necroptosis via ROS-mediated activation of mixed lineage kinase domain-like protein and p38 in classically activated macrophages. Exp Cell Res. 380:171–179. 2019. View Article : Google Scholar : PubMed/NCBI | |
Horvath C, Young M, Jarabicova I, Kindernay L, Ferenczyova K, Ravingerova T, Lewis M and Suleiman MS: Inhibition of cardiac RIP3 mitigates early reperfusion injury and Calcium-induced mitochondrial swelling without altering necroptotic signalling. Int J Mol Sci. 22:79832021. View Article : Google Scholar : PubMed/NCBI | |
Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ, Doevendans PA and Sluijter JP: Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol. 107:2702012. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Apaijai N, Liao S, Maneechote C, Chunchai T, Arunsak B, Benjanuwattra J, Yanpiset P, Chattipakorn SC and Chattipakorn N: Therapeutic potentials of cell death inhibitors in rats with cardiac ischaemia/reperfusion injury. J Cell Mol Med. 26:2462–2476. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guo R and Ren J: Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: Role of mitochondrial death pathway. PLoS One. 5:e87572010. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Xu Y, Hua S, Zhou S and Wang K: ALDH2 attenuates Dox-induced cardiotoxicity by inhibiting cardiac apoptosis and oxidative stress. Int J Clin Exp Med. 8:6794–6803. 2015.PubMed/NCBI | |
Liu M, Li H, Yang R, Ji D and Xia X: GSK872 and necrostatin-1 protect retinal ganglion cells against necroptosis through inhibition of RIP1/RIP3/MLKL pathway in glutamate-induced retinal excitotoxic model of glaucoma. J Neuroinflammation. 19:2622022. View Article : Google Scholar : PubMed/NCBI | |
Shen C, Wang C, Han S, Wang Z, Dong Z, Zhao X, Wang P, Zhu H, Sun X, Ma X, et al: Aldehyde dehydrogenase 2 deficiency negates chronic low-to-moderate alcohol consumption-induced cardioprotecion possibly via ROS-dependent apoptosis and RIP1/RIP3/MLKL-mediated necroptosis. Biochim Biophys Acta Mol Basis Dis. 1863:1912–1918. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhai X, Wang W, Sun S, Han Y, Li J, Cao S, Li R, Xu T, Yuan Q, Wang J, et al: 4-Hydroxy-2-nonenal promotes cardiomyocyte necroptosis via stabilizing receptor-interacting serine/threonine-protein kinase 1. Front Cell Dev Biol. 9:7217952021. View Article : Google Scholar : PubMed/NCBI | |
Fang T, Cao R, Wang W, Ye H, Shen L, Li Z, Hu J and Gao Q: Alterations in necroptosis during ALDH2-mediated protection against high glucose-induced H9c2 cardiac cell injury. Mol Med Rep. 18:2807–2815. 2018.PubMed/NCBI | |
Zhang J, Wang R, Xie L, Ren H, Luo D, Yang Y, Xie H, Shang Z and Liu C: Pharmacological activation of aldehyde dehydrogenase 2 inhibits ferroptosis via SLC7A11/GPX4 axis to reduce kidney stone formation. Eur J Pharmacol. 986:1771322025. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Hu C, Lu X, Yang X, Zhu M, Ma X and Yang Y: ALDH2 alleviates inflammation and facilitates osteogenic differentiation of periodontal ligament stem cells in periodontitis by blocking ferroptosis via activating Nrf2. Funct Integr Genomics. 24:1842024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yuan Z, Chai J, Zhu D, Miao X, Zhou J and Gu X: ALDH2 ameliorates ethanol-induced gastric ulcer through suppressing NLPR3 inflammasome activation and ferroptosis. Arch Biochem Biophys. 743:1096212023. View Article : Google Scholar : PubMed/NCBI | |
Shan G, Bian Y, Yao G, Liang J, Shi H, Hu Z, Zheng Z, Bi G, Fan H and Zhan C: Targeting ALDH2 to augment platinum-based chemosensitivity through ferroptosis in lung adenocarcinoma. Free Radic Biol Med. 224:310–324. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhu ZY, Liu YD, Gong Y, Jin W, Topchiy E, Turdi S, Gao YF, Culver B, Wang SY, Ge W, et al: Mitochondrial aldehyde dehydrogenase (ALDH2) rescues cardiac contractile dysfunction in an APP/PS1 murine model of Alzheimer's disease via inhibition of ACSL4-dependent ferroptosis. Acta Pharmacol Sin. 43:39–49. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li W, Yin L, Sun X, Wu J, Dong Z, Hu K, Sun A and Ge J: Alpha-lipoic acid protects against pressure overload-induced heart failure via ALDH2-dependent Nrf1-FUNDC1 signaling. Cell Death Dis. 11:5992020. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Luo Q, Zhu H, Liu X, Dong Z, Zhang K, Zou Y, Wu J, Ge J and Sun A: Aldehyde dehydrogenase 2 activation ameliorates CCl4-induced chronic liver fibrosis in mice by up-regulating Nrf2/HO-1 antioxidant pathway. J Cell Mol Med. 22:3965–3978. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tao Y, Huang X, Xie Y, Zhou X, He X, Tang S, Liao M, Chen Y, Tan A, Chen Y, et al: Genome-wide association and gene-environment interaction study identifies variants in ALDH2 associated with serum ferritin in a Chinese population. Gene. 685:196–201. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD and Mochly-Rosen D: Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science. 321:1493–1495. 2008. View Article : Google Scholar : PubMed/NCBI | |
Beretta M, Gorren AC, Wenzl MV, Weis R, Russwurm M, Koesling D, Schmidt K and Mayer B: Characterization of the East Asian variant of aldehyde dehydrogenase-2: Bioactivation of nitroglycerin and effects of Alda-1. J Biol Chem. 285:943–952. 2010. View Article : Google Scholar : PubMed/NCBI | |
Perez-Miller S, Younus H, Vanam R, Chen CH, Mochly-Rosen D and Hurley TD: Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nat Struct Mol Biol. 17:159–1564. 2010. View Article : Google Scholar : PubMed/NCBI | |
Doorn JA, Hurley TD and Petersen DR: Inhibition of human mitochondrial aldehyde dehydrogenase by 4-hydroxynon-2-enal and 4-oxonon-2-enal. Chem Res Toxicol. 19:102–110. 2006. View Article : Google Scholar : PubMed/NCBI | |
Budas GR, Disatnik MH and Mochly-Rosen D: Aldehyde dehydrogenase 2 in cardiac protection: A new therapeutic target? Trends Cardiovasc Med. 19:158–164. 2009. View Article : Google Scholar : PubMed/NCBI | |
Malyshev Y, Neuzil P, Petru J, Funasako M, Hala P, Kopriva K, Schneider C, Achyutha A, Vanderper A, Musikantow D, et al: Nitroglycerin to ameliorate coronary artery spasm during focal Pulsed-Field ablation for atrial fibrillation. JACC Clin Electrophysiol. 10:885–896. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mollace V, Muscoli C, Dagostino C, Giancotti LA, Gliozzi M, Sacco I, Visalli V, Gratteri S, Palma E, Malara N, et al: The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: Role in nitrate tolerance. Pharmacol Res. 89:29–35. 2014. View Article : Google Scholar : PubMed/NCBI | |
Salvemini D, Pistelli A and Mollace V: Release of nitric oxide from glyceryl trinitrate by captopril but not enalaprilat: In vitro and in vivo studies. Br J Pharmacol. 109:430–436. 1993. View Article : Google Scholar : PubMed/NCBI | |
Munzel T and Daiber A: The potential of aldehyde dehydrogenase 2 as a therapeutic target in cardiovascular disease. Expert Opin Ther Targets. 22:217–231. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhang D, Jin W, Shao C, Yan P, Xu C, Sheng H, Liu Y, Yu J, Xie Y, et al: Mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin. J Clin Invest. 116:506–511. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nagano T, Ushijima K, Taga N, Takeuchi M, Kawada MA, Aizawa K, Imai Y and Fujimura A: Influence of the aldehyde dehydrogenase 2 polymorphism on the vasodilatory effect of nitroglycerin in infants with congenital heart disease and pulmonary arterial hypertension. Eur J Clin Pharmacol. 75:1361–1367. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maiuolo J, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Macri R, Scarano F, Coppoletta A, Cardamone A, Bosco F, et al: The generation of nitric oxide from aldehyde Dehydrogenase-2: The role of dietary nitrates and their implication in cardiovascular disease management. Int J Mol Sci. 23:154542022. View Article : Google Scholar : PubMed/NCBI | |
Marini E, Giorgis M, Leporati M, Rolando B, Chegaev K, Lazzarato L, Bertinaria M, Vincenti M and Di Stilo A: Multitarget antioxidant NO-donor organic nitrates: A novel approach to overcome nitrates tolerance, an ex vivo study. Antioxidants (Basel). 11:1662022. View Article : Google Scholar : PubMed/NCBI | |
Chen YR, Nie SD, Shan W, Jiang DJ, Shi RZ, Zhou Z, Guo R, Zhang Z and Li YJ: Decrease in endogenous CGRP release in nitroglycerin tolerance: Role of ALDH-2. Eur J Pharmacol. 571:44–50. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim EJ, Kim SY, Lee JH, Kim JM, Kim JS, Byun JI and Koo BN: Effect of isoflurane post-treatment on tPA-exaggerated brain injury in a rat ischemic stroke model. Korean J Anesthesiol. 68:281–286. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zangrillo A, Lomivorotov VV, Pasyuga VV, Belletti A, Gazivoda G, Monaco F, Nigro Neto C, Likhvantsev VV, Bradic N, Lozovskiy A, et al: Effect of volatile anesthetics on myocardial infarction after coronary artery surgery: A post hoc analysis of a randomized trial. J Cardiothorac Vasc Anesth. 36:2454–2462. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yuan J and Fu X: MicroRNA-21 mediates the protective role of emulsified isoflurane against myocardial ischemia/reperfusion injury in mice by targeting SPP1. Cell Signal. 86:1100862021. View Article : Google Scholar : PubMed/NCBI | |
Ku HC, Huang CW and Lee SY: Technical refinement of a bilateral renal Ischemia-reperfusion mouse model for acute kidney injury research. J Vis Exp. Nov 3–2023.doi: 10.3791/63957. View Article : Google Scholar : PubMed/NCBI | |
Obeid PCI, Natalini CC and Howell GE: Exposure to emulsified isoflurane and sevoflurane protects canine primary hepatocytes against hypoxia-induced apoptosis. Am J Vet Res. 1–8. 2023.doi: 10.2460/ajvr.23.08.0192 (Epub ahead of print). PubMed/NCBI | |
Li H and Lang XE: Protein kinase C signaling pathway involvement in cardioprotection during isoflurane pretreatment. Mol Med Rep. 11:2683–2688. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cleveland JC Jr, Meldrum DR, Rowland RT, Banerjee A and Harken AH: Adenosine preconditioning of human myocardium is dependent upon the ATP-sensitive K+ channel. J Mol Cell Cardiol. 29:175–182. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Shi Q, Guo Q, Peng L, Li X, Rao L and Li M: Remote ischemic preconditioning can extend the tolerance to extended drug-coated balloon inflation time by reducing myocardial damage during percutaneous coronary intervention. Int J Cardiol. 353:3–8. 2022. View Article : Google Scholar : PubMed/NCBI | |
Amador A, Grande L, Marti J, Deulofeu R, Miquel R, Sola A, Rodriguez-Laiz G, Ferrer J, Fondevila C, Charco R, et al: Ischemic pre-conditioning in deceased donor liver transplantation: A prospective randomized clinical trial. Am J Transplant. 7:2180–2189. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hardt J, Seyfried S, Brodrecht H, Khalil L, Buttner S, Herrle F, Reissfelder C and Rahbari NN: Remote ischemic preconditioning versus sham-control for prevention of anastomotic leakage after resection for rectal cancer (RIPAL trial): A pilot randomized controlled, triple-blinded monocenter trial. Int J Colorectal Dis. 39:652024. View Article : Google Scholar : PubMed/NCBI | |
Ueta CB, Campos JC, Albuquerque RPE, Lima VM, Disatnik MH, Sanchez AB, Chen CH, de Medeiros MHG, Yang W, Mochly-Rosen D and Ferreira JCB: Cardioprotection induced by a brief exposure to acetaldehyde: Role of aldehyde dehydrogenase 2. Cardiovasc Res. 114:1006–1015. 2018. View Article : Google Scholar : PubMed/NCBI | |
Marino A and Levi R: Salvaging the ischemic heart: Gi-coupled receptors in mast cells activate a PKCepsilon/ALDH2 pathway providing Anti-RAS cardioprotection. Curr Med Chem. 25:4416–4431. 2018. View Article : Google Scholar : PubMed/NCBI | |
Churchill EN, Disatnik MH and Mochly-Rosen D: Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of varepsilonPKC and activation of aldehyde dehydrogenase 2. J Mol Cell Cardiol. 46:278–284. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Gray MO and Mochly-Rosen D: Cardioprotection from ischemia by a brief exposure to physiological levels of ethanol: Role of epsilon protein kinase C. Proc Natl Acad Sci USA. 96:12784–12789. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kang PF, Wu WJ, Tang Y, Xuan L, Guan SD, Tang B, Zhang H, Gao Q and Wang HJ: Activation of ALDH2 with low concentration of ethanol attenuates myocardial Ischemia/Reperfusion injury in diabetes rat model. Oxid Med Cell Longev. 2016:61905042016. View Article : Google Scholar : PubMed/NCBI | |
Li D, Chen J, Ai Y, Gu X, Li L, Che D, Jiang Z, Li L, Chen S, Huang H, et al: Estrogen-related hormones induce apoptosis by stabilizing Schlafen-12 protein turnover. Mol Cell. 75:1103–16.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ji E, Jiao T, Shen Y, Xu Y, Sun Y, Cai Z, Zhang Q and Li J: Molecular mechanism of HSF1-Upregulated ALDH2 by PKC in ameliorating pressure overload-induced heart failure in mice. Biomed Res Int. 2020:34816232020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Wang L, Qin X, Turdi S, Sun D, Culver B, Reiter RJ, Wang X, Zhou H and Ren J: ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy. Signal Transduct Target Ther. 5:1192020. View Article : Google Scholar : PubMed/NCBI | |
Luo G, Huang B, Qiu X, Xiao L, Wang N, Gao Q, Yang W and Hao L: Resveratrol attenuates excessive ethanol exposure induced insulin resistance in rats via improving NAD+/NADH ratio. Mol Nutr Food Res. 612017.doi: 10.1002/mnfr.201700087. | |
Zhang H, Xue L, Li B, Zhang Z and Tao S: Vitamin D protects against alcohol-induced liver cell injury within an NRF2-ALDH2 feedback loop. Mol Nutr Food Res. 63:e18010142019. View Article : Google Scholar : PubMed/NCBI | |
He JD and Parker JD: The effect of vitamin C on nitroglycerin-mediated vasodilation in individuals with and without the aldehyde dehydrogenase 2 polymorphism. Br J Clin Pharmacol. 89:2767–2774. 2023. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Gutierrez G, Duthie GG, Wood S, Morrice P, Nicol F, Reid M, Cantlay LL, Kelder T, Horgan GW, Fernández-Bolaños Guzmán J and de Roos B: Alperujo extract, hydroxytyrosol, and 3,4-dihydroxyphenylglycol are bioavailable and have antioxidant properties in vitamin E-deficient rats-a proteomics and network analysis approach. Mol Nutr Food Res. 56:1137–1147. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hosoi T, Yamaguchi R, Noji K, Matsuo S, Baba S, Toyoda K, Suezawa T, Kayano T, Tanaka S and Ozawa K: Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress. EMBO Mol Med. 6:335–346. 2014. View Article : Google Scholar : PubMed/NCBI | |
Balber AE: Concise review: Aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: Characteristics, activities, and emerging uses in regenerative medicine. Stem Cells. 29:570–575. 2011. View Article : Google Scholar : PubMed/NCBI | |
Perin EC, Silva GV, Zheng Y, Gahremanpour A, Canales J, Patel D, Fernandes MR, Keller LH, Quan X, Coulter SA, et al: Randomized, double-blind pilot study of transendocardial injection of autologous aldehyde dehydrogenase-bright stem cells in patients with ischemic heart failure. Am Heart J. 163:415–421.e1. 2012. View Article : Google Scholar : PubMed/NCBI | |
Perin EC, Murphy M, Cooke JP, Moye L, Henry TD, Bettencourt J, Gahremanpour A, Leeper N, Anderson RD, Hiatt WR, et al: Rationale and design for PACE: Patients with intermittent claudication injected with ALDH bright cells. Am Heart J. 168:667–673. 2014. View Article : Google Scholar : PubMed/NCBI | |
Perin EC, Murphy MP, March KL, Bolli R, Loughran J, Yang PC, Leeper NJ, Dalman RL, Alexander J, Henry TD, et al: Evaluation of cell therapy on exercise performance and limb perfusion in peripheral artery disease: The CCTRN PACE trial (Patients with intermittent claudication injected with ALDH bright cells). Circulation. 135:1417–1428. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Zhu H, Dong Z, Liu X, Ma X, Han S, Lu F, Wang P, Qian S, Wang C, et al: Mitochondrial aldehyde dehydrogenase-2 deficiency compromises therapeutic effect of ALDH bright cell on peripheral ischemia. Redox Biol. 13:196–206. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chan W, Taylor AJ, Ellims AH, Lefkovits L, Wong C, Kingwell BA, Natoli A, Croft KD, Mori T, Kaye DM, et al: Effect of iron chelation on myocardial infarct size and oxidative stress in ST-elevation-myocardial infarction. Circ Cardiovasc Interv. 5:270–278. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li W, Feng G, Gauthier JM, Lokshina I, Higashikubo R, Evans S, Kiertiburanakul S, Lee MP, Supparatpinyo K, Zhang F, et al: Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 129:2293–2304. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, Liu D, Zhang F, Ning S, Yao J and Tian X: Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 26:2284–2299. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Zhao C, Li H, Chen X, Ding Y and Xu S: Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun. 497:233–240. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu W, An S, Shao T, Xu H, Chen H, Ning J, Zhou Y and Chai X: Active compounds of herbs ameliorate impaired cognition in APP/PS1 mouse model of Alzheimer's disease. Aging (Albany NY). 11:11186–11201. 2019. View Article : Google Scholar : PubMed/NCBI | |
Eleftheriadis T, Pissas G, Filippidis G, Liakopoulos V and Stefanidis I: Reoxygenation induces reactive oxygen species production and ferroptosis in renal tubular epithelial cells by activating aryl hydrocarbon receptor. Mol Med Rep. 23:412021.PubMed/NCBI | |
Chen K, Xu Z, Liu Y, Wang Z, Li Y, Xu X, Chen C, Xia T, Liao Q, Yao Y, et al: Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Sci Transl Med. 9:eaao62982017. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Xu F and Lu H: LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci. 260:1183052020. View Article : Google Scholar : PubMed/NCBI | |
Stamenkovic A, O'Hara KA, Nelson DC, Maddaford TG, Edel AL, Maddaford G, Dibrov E, Aghanoori M, Kirshenbaum LA, Fernyhough P, et al: Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 320:H1170–H1184. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 22:1520–1530. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Yang J, Sun G, Hu J, Zhang Q, Cai J, Yuan D, Li H, Hei Z and Yao W: Macrophage extracellular traps aggravate iron overload-related liver ischaemia/reperfusion injury. Br J Pharmacol. 178:3783–3796. 2021. View Article : Google Scholar : PubMed/NCBI | |
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Li X, Cheng Y, Yang M and Wang R: Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion. FASEB J. 34:16262–16275. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yamada N, Karasawa T, Wakiya T, Sadatomo A, Ito H, Kamata R, Watanabe S, Komada T, Kimura H, Sanada Y, et al: Iron overload as a risk factor for hepatic Ischemia-Reperfusion injury in liver transplantation: Potential role of ferroptosis. Am J Transplant. 20:1606–1618. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Xue X, Hou Q and Dai C: Targeting ferroptosis attenuates interstitial inflammation and kidney fibrosis. Kidney Dis (Basel). 8:57–71. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tu H, Zhou YJ, Tang LJ, Xiong XM, Zhang XJ, Ali Sheikh MS, Zhang JJ, Luo XJ, Yuan C and Peng J: Combination of ponatinib with deferoxamine synergistically mitigates ischemic heart injury via simultaneous prevention of necroptosis and ferroptosis. Eur J Pharmacol. 898:1739992021. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Han L, Zhang X, Xie L, Pan P and Chen F: Selenium alleviates cerebral Ischemia/reperfusion injury by regulating oxidative stress, mitochondrial fusion and ferroptosis. Neurochem Res. 47:2992–3002. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lv Z, Wang F, Zhang X, Zhang X, Zhang J and Liu R: Etomidate attenuates the ferroptosis in myocardial Ischemia/Reperfusion rat model via Nrf2/HO-1 pathway. Shock. 56:440–449. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Sun X, Huang N, Li P, He J, Jiang L, Zhang X, Han S and Xin H: Entacapone alleviates acute kidney injury by inhibiting ferroptosis. FASEB J. 36:e223992022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, He W, Wei H, Chang C, Yang L, Meng J, Long T, Xu Q and Zhang C: Srs11-92, a ferrostatin-1 analog, improves oxidative stress and neuroinflammation via Nrf2 signal following cerebral ischemia/reperfusion injury. CNS Neurosci Ther. 29:1667–1677. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li C and Liu Y: Puerarin reduces cell damage from cerebral ischemia-reperfusion by inhibiting ferroptosis. Biochem Biophys Res Commun. 693:1493242024. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Li W, Peng S, Zhou G, Chen S, Wei Y, Xu J, Gu H, Li J, Liu S and Liu B: Puerarin protects against myocardial Ischemia/Reperfusion injury by inhibiting ferroptosis. Biol Pharm Bull. 46:524–532. 2023. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Li X, Yang X, Yan J, Shi P, Ba L, Cao Y and Wang P: The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation. Life Sci. 235:1167952019. View Article : Google Scholar : PubMed/NCBI | |
Fu C, Wu Y, Liu S, Luo C, Lu Y, Liu M, Wang L, Zhang Y and Liu X: Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J Ethnopharmacol. 289:1150212022. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Liu H, Yang C, Mo H, Wang X, Song X, Jiang L, Deng P, Chen R, Wu P, et al: Galangin attenuates myocardial ischemic Reperfusion-Induced ferroptosis by targeting Nrf2/Gpx4 signaling pathway. Drug Des Devel Ther. 17:2495–2511. 2023. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Zhu L, Tang P, Chen D, Li Y, Li J and Bao C: Carthamin yellow improves cerebral ischemia-reperfusion injury by attenuating inflammation and ferroptosis in rats. Int J Mol Med. 47:522021. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Zhai Y, Chen J, Xu X and Wang H: Kaempferol ameliorates Oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 Axis. Biomolecules. 11:9232021. View Article : Google Scholar : PubMed/NCBI | |
Lin JH, Yang KT, Ting PC, Luo YP, Lin DJ, Wang YS and Chang JC: Gossypol acetic acid attenuates cardiac ischemia/reperfusion injury in rats via an antiferroptotic mechanism. Biomolecules. 11:16672021. View Article : Google Scholar : PubMed/NCBI | |
Du YW, Li XK, Wang TT, Zhou L, Li HR, Feng L, Ma H and Liu HB: Cyanidin-3-glucoside inhibits ferroptosis in renal tubular cells after ischemia/reperfusion injury via the AMPK pathway. Mol Med. 29:422023. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Wu B, Zhong B, Lin L, Ding Y, Jin X, Huang Z, Lin M, Wu H and Xu D: Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered. 12:10924–10934. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li T, Tan Y, Ouyang S, He J and Liu L: Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene. 808:1459682022. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Huang J, Chen Y, Li X, Wen J, Tian M, Ren J, Zhou L and Yang Q: Resveratrol pretreatment protects neurons from oxygen-glucose deprivation/reoxygenation and ischemic injury through inhibiting ferroptosis. Biosci Biotechnol Biochem. 86:704–716. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Shen T, Lian J, Deng K, Qu C, Li E, Li G, Ren Y, Wang Z, Jiang Z, et al: Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway. Mol Med. 29:1372023. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Bi J, Ren Y, Du Z, Li T, Wang T, Zhang L, Wang M, Wei S, Lv Y and Wu R: Involvement of GPX4 in irisin's protection against ischemia reperfusion-induced acute kidney injury. J Cell Physiol. 236:931–945. 2021. View Article : Google Scholar : PubMed/NCBI |