
New developments in the role of ferroptosis in sepsis‑induced cardiomyopathy (Review)
- Authors:
- Dingdeng Wang
- Xinguang Qu
- Zhaohui Zhang
- Gaosheng Zhou
-
Affiliations: Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China - Published online on: March 4, 2025 https://doi.org/10.3892/mmr.2025.13483
- Article Number: 118
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Xu JQ, Zhang WY, Fu JJ, Fang XZ, Gao CG, Li C, Yao L, Li QL, Yang XB, Ren LH, et al: Viral sepsis: Diagnosis, clinical features, pathogenesis, and clinical considerations. Mil Med Res. 11:782024.PubMed/NCBI | |
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI | |
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M, Prescott HC, et al: Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 47:1181–1247. 2021. View Article : Google Scholar : PubMed/NCBI | |
Scheer C, Gründling M and Kuhn SO: Do not forget the blood cultures! Intensive Care Med. 48:509–510. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, et al: Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the global burden of disease study. Lancet. 395:200–211. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dantes RB, Kaur H, Bouwkamp BA, Haass KA, Patel P, Dudeck MA, Srinivasan A, Magill SS, Wilson WW, Whitaker M, et al: Sepsis program activities in acute care hospitals-national healthcare safety network, United States, 2022. MMWR Morb Mortal Wkly Rep. 72:907–911. 2023. View Article : Google Scholar : PubMed/NCBI | |
Weng L, Xu Y, Yin P, Wang Y, Chen Y, Liu W, Li S, Peng JM, Dong R, Hu XY, et al: National incidence and mortality of hospitalized sepsis in China. Crit Care. 27:842023. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Xu Y, Fang Y, Wang C, Xue Y, Wang F, Cheng J, Ren H, Wang J, Guo W, et al: Pathogenetic mechanisms of septic cardiomyopathy. J Cell Physiol. 237:49–58. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hollenberg SM and Singer M: Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol. 18:424–434. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Kang R, Berghe TV, Vandenabeele P and Kroemer G: The molecular machinery of regulated cell death. Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI | |
Khatun J, Gelles JD and Chipuk JE: Dynamic death decisions: How mitochondrial dynamics shape cellular commitment to apoptosis and ferroptosis. Dev Cell. 59:2549–2565. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li J, Kang R, Klionsky DJ and Tang D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol Cell. 73:354–363.e3. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ahola S and Langer T: Ferroptosis in mitochondrial cardiomyopathy. Trends Cell Biol. 34:150–160. 2024. View Article : Google Scholar : PubMed/NCBI | |
Song J, Fang X, Zhou K, Bao H and Li L: Sepsis induced cardiac dysfunction and pathogenetic mechanisms (Review). Mol Med Rep. 28:2272023. View Article : Google Scholar : PubMed/NCBI | |
Ye H, Hu H, Zhou X, Dong M and Ren J: Targeting ferroptosis in the maintenance of mitochondrial homeostasis in the realm of septic cardiomyopathy. Curr Opin Pharmacol. 74:1024302024. View Article : Google Scholar : PubMed/NCBI | |
Carbone F, Liberale L, Preda A, Schindler TH and Montecucco F: Septic cardiomyopathy: From pathophysiology to the clinical setting. Cells. 11:28332022. View Article : Google Scholar : PubMed/NCBI | |
Martin L, Derwall M, Al Zoubi S, Zechendorf E, Reuter DA, Thiemermann C and Schuerholz T: The septic heart: Current understanding of molecular mechanisms and clinical implications. Chest. 155:427–437. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hiraiwa H, Kasugai D, Okumura T and Murohara T: Clinical implications of septic cardiomyopathy: A narrative review. Medicine (Baltimore). 103:e379402024. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang XT, Liu DW, Zhang HM and Su LX: Induction and deduction in sepsis-induced cardiomyopathy: Five typical categories. Chin Med J (Engl). 133:2205–2211. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Xu C, Hu Q and Wang Y: Sepsis-induced cardiomyopathy: Understanding pathophysiology and clinical implications. Arch Toxicol. Nov 27–2024.(Epub ahead of print). | |
Fan D and Wu R: Mechanisms of the septic heart: From inflammatory response to myocardial edema. J Mol Cell Cardiol. 195:73–82. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lim GB: Cardiac-resident macrophages protect against sepsis-induced cardiomyopathy. Nat Rev Cardiol. 20:1412023. View Article : Google Scholar : PubMed/NCBI | |
Hernández-Jiménez E, Plata-Menchaca EP, Berbel D, López de Egea G, Dastis-Arias M, García-Tejada L, Sbraga F, Malchair P, García Muñoz N, Larrad Blasco A, et al: Assessing sepsis-induced immunosuppression to predict positive blood cultures. Front Immunol. 15:14475232024. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Qin S, Li Z, Gao W, Tang M and Dong X: Early immune system alterations in patients with septic shock. Front Immunol. 14:11268742023. View Article : Google Scholar : PubMed/NCBI | |
Bi CF, Liu J, Yang LS and Zhang JF: Research progress on the mechanism of sepsis induced myocardial injury. J Inflamm Res. 15:4275–4290. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Ji S, Liu L, Liu S, Wang B, Ma Y and Cao X: Promotion of TLR7-MyD88-dependent inflammation and autoimmunity in mice through stem-loop changes in Lnc-Atg16l1. Nat Commun. 15:102242024. View Article : Google Scholar : PubMed/NCBI | |
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T and Zhang J: NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther. 9:532024. View Article : Google Scholar : PubMed/NCBI | |
Siebeler R, de Winther MPJ and Hoeksema MA: The regulatory landscape of macrophage interferon signaling in inflammation. J Allergy Clin Immunol. 152:326–337. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li X, Dai Y, Han Y, Wei X, Wei G, Chen W, Kong S, He Y, Liu H, et al: Neutrophil N1 polarization induced by cardiomyocyte-derived extracellular vesicle miR-9-5p aggravates myocardial ischemia/reperfusion injury. J Nanobiotechnology. 22:6322024. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Liu S, Wu Q, Chen R, Jiang S and Yang Z: m6A-mediated upregulation of miRNA-193a aggravates cardiomyocyte apoptosis and inflammatory response in sepsis-induced cardiomyopathy via the METTL3/miRNA-193a/BCL2L2 pathway. Exp Cell Res. 430:1137122023. View Article : Google Scholar : PubMed/NCBI | |
Flemming A: Insights into immune cell-fibroblast communication in heart disease. Nat Rev Immunol. 24:8492024. View Article : Google Scholar : PubMed/NCBI | |
Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JGF, Colucci WS, Butler J, Voors AA, et al: Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol. 14:238–250. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stanzani G, Duchen MR and Singer M: The role of mitochondria in sepsis-induced cardiomyopathy. Biochim Biophys Acta Mol Basis Dis. 1865:759–773. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Xu Y and Zhang Z: Sepsis-induced myocardial dysfunction (SIMD): The pathophysiological mechanisms and therapeutic strategies targeting mitochondria. Inflammation. 43:1184–1200. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Guan B, Xu J, Zhang H, Yi L and Yang Z: Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother. 167:1154932023. View Article : Google Scholar : PubMed/NCBI | |
Ni D, Lin X, Deng C, Yuan L, Li J, Liu Y, Liang P and Jiang B: Energy metabolism: From physiological changes to targets in sepsis-induced cardiomyopathy. Hellenic J Cardiol. 80:96–106. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Zhang YT, Teng F, Li HH and Guo SB: S100a8/a9 contributes to sepsis-induced cardiomyopathy by activating ERK1/2-Drp1-mediated mitochondrial fission and respiratory dysfunction. Int Immunopharmacol. 115:1097162023. View Article : Google Scholar : PubMed/NCBI | |
Vilas-Boas EA, Cabral-Costa JV, Ramos VM, Caldeira da Silva CC and Kowaltowski AJ: Goldilocks calcium concentrations and the regulation of oxidative phosphorylation: Too much, too little, or just right. J Biol Chem. 299:1029042023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Feng YF, Liu XT, Li YC, Zhu HM, Sun MR, Li P, Liu B and Yang H: Songorine promotes cardiac mitochondrial biogenesis via Nrf2 induction during sepsis. Redox Biol. 38:1017712021. View Article : Google Scholar : PubMed/NCBI | |
Ajoolabady A, Chiong M, Lavandero S, Klionsky DJ and Ren J: Mitophagy in cardiovascular diseases: Molecular mechanisms, pathogenesis, and treatment. Trends Mol Med. 28:836–849. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Jasper H, Toan S, Muid D, Chang X and Zhou H: Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury. Redox Biol. 45:1020492021. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Li Q, Shi H, Li F, Duan Y and Guo Q: New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed Pharmacother. 178:1170842024. View Article : Google Scholar : PubMed/NCBI | |
Chen A, Huang H, Fang S and Hang Q: ROS: A ‘booster’ for chronic inflammation and tumor metastasis. Biochim Biophys Acta Rev Cancer. 1879:1891752024. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Huang B, Cao J, Wang Y, Xiao H, Zhu Y and Zhang H: ROS fine-tunes the function and fate of immune cells. Int Immunopharmacol. 119:1100692023. View Article : Google Scholar : PubMed/NCBI | |
Kuroshima T, Kawaguchi S and Okada M: Current perspectives of mitochondria in sepsis-induced cardiomyopathy. Int J Mol Sci. 25:47102024. View Article : Google Scholar : PubMed/NCBI | |
Del Re DP, Amgalan D, Linkermann A, Liu Q and Kitsis RN: Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 99:1765–1817. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sheng SY, Li JM, Hu XY and Wang Y: Regulated cell death pathways in cardiomyopathy. Acta Pharmacol Sin. 44:1521–1535. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jarocki M, Turek K, Saczko J, Tarek M and Kulbacka J: Lipids associated with autophagy: Mechanisms and therapeutic targets. Cell Death Discov. 10:4602024. View Article : Google Scholar : PubMed/NCBI | |
Iba T, Helms J, Maier CL, Ferrer R and Levy JH: Autophagy and autophagic cell death in sepsis: Friend or foe? J Intensive Care. 12:412024. View Article : Google Scholar : PubMed/NCBI | |
Li J, Teng D, Jia W, Gong L, Dong H, Wang C, Zhang L, Xu B, Wang W, Zhong L, et al: PLD2 deletion ameliorates sepsis-induced cardiomyopathy by suppressing cardiomyocyte pyroptosis via the NLRP3/caspase 1/GSDMD pathway. Inflamm Res. 73:1033–1046. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Li Y, Zhang S and Zhou X: Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 11:3052–3059. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Liu Y, Li Z, Feng S, Lin S, Ge Z, Fan Y, Wang Y, Wang X and Mao J: Coronary microvascular dysfunction and cardiovascular disease: Pathogenesis, associations and treatment strategies. Biomed Pharmacother. 164:1150112023. View Article : Google Scholar : PubMed/NCBI | |
Piamsiri C, Fefelova N, Pamarthi SH, Gwathmey JK, Chattipakorn SC, Chattipakorn N and Xie LH: Potential roles of IP3 receptors and calcium in programmed cell death and implications in cardiovascular diseases. Biomolecules. 14:13342024. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhang R, Jiang X, Lv J, Li Y, Ye H, Liu W, Wang G, Zhang C, Zheng N, et al: Toll-like receptor 4-induced ryanodine receptor 2 oxidation and sarcoplasmic reticulum Ca2+ leakage promote cardiac contractile dysfunction in sepsis. J Biol Chem. 293:794–807. 2018. View Article : Google Scholar : PubMed/NCBI | |
Carrara M, Ferrario M, Bollen Pinto B and Herpain A: The autonomic nervous system in septic shock and its role as a future therapeutic target: A narrative review. Ann Intensive Care. 11:802021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zhang D, Lin Q and Cui X: Therapeutically fine-tuning autonomic nervous system to treat sepsis: A new perspective on the immunomodulatory effects of acupuncture. J Inflamm Res. 17:4373–4387. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu S and Chong W: Roles of LncRNAs in regulating mitochondrial dysfunction in septic cardiomyopathy. Front Immunol. 12:8020852021. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Shen J, Jiang J, Wang F and Min J: Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 8:3722023. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Yu C, Kang R, Kroemer G and Tang D: Cellular degradation systems in ferroptosis. Cell Death Differ. 28:1135–1148. 2021. View Article : Google Scholar : PubMed/NCBI | |
Su Z, Liu Y, Wang L and Gu W: Regulation of SLC7A11 as an unconventional checkpoint in tumorigenesis through ferroptosis. Genes Dis. 12:1012542024. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Ma B, Yang Y, Wang B, Hao J and Zhou X: Disulfidptosis decoded: A journey through cell death mysteries, regulatory networks, disease paradigms and future directions. Biomark Res. 12:452024. View Article : Google Scholar : PubMed/NCBI | |
Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X and Wu C: Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 277:1211102021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Guo M, Wei H and Chen Y: Targeting p53 pathways: Mechanisms, structures, and advances in therapy. Signal Transduct Target Ther. 8:922023. View Article : Google Scholar : PubMed/NCBI | |
Song X, Zhu S, Chen P, Hou W, Wen Q, Liu J, Xie Y, Liu J, Klionsky DJ, Kroemer G, et al: AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc− activity. Curr Biol. 28:2388–2399.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ichihara G, Katsumata Y, Sugiura Y, Matsuoka Y, Maeda R, Endo J, Anzai A, Shirakawa K, Moriyama H, Kitakata H, et al: MRP1-dependent extracellular release of glutathione induces cardiomyocyte ferroptosis after ischemia-reperfusion. Circ Res. 133:861–876. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Xie B, Li Z, Chen L, Chen Y, Zhou J, Ju S, Zhou Y, Zhang X, Zhuo W, et al: Fascin enhances the vulnerability of breast cancer to erastin-induced ferroptosis. Cell Death Dis. 13:1502022. View Article : Google Scholar : PubMed/NCBI | |
Gan B: Mitochondrial regulation of ferroptosis. J Cell Biol. 220:e2021050432021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wan Y, Jiang Y, Zhang L and Cheng W: GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer. 1878:1888902023. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Tang D and Kang R: Targeting GPX4 in ferroptosis and cancer: Chemical strategies and challenges. Trends Pharmacol Sci. 45:666–670. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Li J, Peng L, Xu F, Tan Y, He X, Zhu C, Zhang ZM, Zhang Z, Sun P, et al: Novel covalent probe selectively targeting glutathione peroxidase 4 in vivo: Potential applications in pancreatic cancer therapy. J Med Chem. 67:1872–1887. 2024. View Article : Google Scholar : PubMed/NCBI | |
Giustizieri M, Petrillo S, D'Amico J, Torda C, Quatrana A, Vigevano F, Specchio N, Piemonte F and Cherubini E: The ferroptosis inducer RSL3 triggers interictal epileptiform activity in mice cortical neurons. Front Cell Neurosci. 17:12137322023. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Leng J, Tan J, Zhao Y, Xie S, Zhao S, Yan X, Zhu L, Luo J, Kong L and Yin Y: Discovery of novel potent covalent glutathione peroxidase 4 inhibitors as highly selective ferroptosis inducers for the treatment of triple-negative breast cancer. J Med Chem. 66:10036–10059. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Swanda RV, Nie L, Liu X, Wang C, Lee H, Lei G, Mao C, Koppula P, Cheng W, et al: mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 12:15892021. View Article : Google Scholar : PubMed/NCBI | |
Ru Q, Li Y, Chen L, Wu Y, Min J and Wang F: Iron homeostasis and ferroptosis in human diseases: Mechanisms and therapeutic prospects. Signal Transduct Target Ther. 9:2712024. View Article : Google Scholar : PubMed/NCBI | |
Grange C, Lux F, Brichart T, David L, Couturier A, Leaf DE, Allaouchiche B and Tillement O: Iron as an emerging therapeutic target in critically ill patients. Crit Care. 27:4752023. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI | |
Roemhild K, von Maltzahn F, Weiskirchen R, Knüchel R, von Stillfried S and Lammers T: Iron metabolism: Pathophysiology and pharmacology. Trends Pharmacol Sci. 42:640–656. 2021. View Article : Google Scholar : PubMed/NCBI | |
Salnikow K: Role of iron in cancer. Semin Cancer Biol. 76:189–194. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Yang A, Chen B, Deng X, Xie J, Dai D, Zhang J, Tang H, Wu T, Zhou Z, et al: crVDAC3 alleviates ferroptosis by impeding HSPB1 ubiquitination and confers trastuzumab deruxtecan resistance in HER2-low breast cancer. Drug Resist Updat. 77:1011262024. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Wang J, Shen Y, Li H, Rausch WD and Huang X: Iron dyshomeostasis and ferroptosis: A new alzheimer's disease hypothesis? Front Aging Neurosci. 14:8305692022. View Article : Google Scholar : PubMed/NCBI | |
Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ and Mercurio AM: Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell. 51:575–586.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Kang R, Tang D and Liu J: Ferroptosis: Principles and significance in health and disease. J Hematol Oncol. 17:412024. View Article : Google Scholar : PubMed/NCBI | |
Gasmi A, Bjørklund G, Mujawdiya PK, Semenova Y, Piscopo S and Peana M: Coenzyme Q10 in aging and disease. Crit Rev Food Sci Nutr. 64:3907–3919. 2024. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T, Hipp C, Santos Dias Mourão A, Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E, Emler D, et al: Phase separation of FSP1 promotes ferroptosis. Nature. 619:371–377. 2023. View Article : Google Scholar : PubMed/NCBI | |
Roh JL: Targeting ferroptosis suppressor protein 1 in cancer therapy: Implications and perspectives, with emphasis on head and neck cancer. Crit Rev Oncol Hematol. 202:1044402024. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Lu S, Wu LL, Yang L, Yang L and Wang J: The diversified role of mitochondria in ferroptosis in cancer. Cell Death Dis. 14:5192023. View Article : Google Scholar : PubMed/NCBI | |
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mishima E, Nakamura T, Zheng J, Zhang W, Mourão ASD, Sennhenn P and Conrad M: DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature. 619:E9–E18. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR and Jiang X: Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell. 186:2748–2764.e22. 2023. View Article : Google Scholar : PubMed/NCBI | |
No authors listed. Sex hormone signaling suppresses ferroptosis via phospholipid remodeling. Cancer Discov. 13:17592023. View Article : Google Scholar | |
Nakamura T and Conrad M: Exploiting ferroptosis vulnerabilities in cancer. Nat Cell Biol. 26:1407–1419. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Dai J, Hou G, Liu H, Zheng S, Wang X, Lin Q, Zhang Y, Lu M, Gong Y, et al: SMURF2 predisposes cancer cell toward ferroptosis in GPX4-independent manners by promoting GSTP1 degradation. Mol Cell. 83:4352–4369.e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
Micangeli G, Menghi M, Profeta G, Tarani F, Mariani A, Petrella C, Barbato C, Ferraguti G, Ceccanti M, Tarani L and Fiore M: The impact of oxidative stress on pediatrics syndromes. Antioxidants (Basel). 11:19832022. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Ardehali H, Min J and Wang F: The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 20:7–23. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Yu C, Yang X, Wang F and Min J: A panoramic view of ferroptosis in cardiovascular disease. Kidney Dis (Basel). 9:173–186. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Xie X, Liao W, Chen S, Zhong R, Qin J, He P and Xie J: Ferroptosis in cardiovascular disease. Biomed Pharmacother. 170:1160572024. View Article : Google Scholar : PubMed/NCBI | |
Fang W, Xie S and Deng W: Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol. 40:172024. View Article : Google Scholar : PubMed/NCBI | |
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N and Geng Q: Mitochondrial quality control in human health and disease. Mil Med Res. 11:322024.PubMed/NCBI | |
Long X, Liu M, Nan Y, Chen Q, Xiao Z, Xiang Y, Ying X, Sun J, Huang Q and Ai K: Revitalizing ancient mitochondria with nano-strategies: Mitochondria-remedying nanodrugs concentrate on disease control. Adv Mater. 36:e23082392024. View Article : Google Scholar : PubMed/NCBI | |
Conrad M and Proneth B: Broken hearts: Iron overload, ferroptosis and cardiomyopathy. Cell Res. 29:263–264. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Zou Q, Tang H, Liu J, Zhang S, Fan C, Zhang J, Liu R, Liu Y, Liu R, et al: Melanin nanoparticles alleviate sepsis-induced myocardial injury by suppressing ferroptosis and inflammation. Bioact Mater. 24:313–321. 2022.PubMed/NCBI | |
Liu R, Li F, Hao S, Hou D, Zeng X, Huang H, Sethi G, Guo J and Duan C: Low-dose olaparib improves septic cardiac function by reducing ferroptosis via accelerated mitophagy flux. Pharmacol Res. 200:1070562024. View Article : Google Scholar : PubMed/NCBI | |
Dan Z, Shi X, Shu C, Zhu R, Wang Y and Zhu H: 4-amino-2-trifluoromethyl-phenyl retinate alleviates lipopolysaccharide-induced acute myocardial injury through activation of the KLF4/p62 axis. Cell Signal. 114:1110012024. View Article : Google Scholar : PubMed/NCBI | |
Kanwar P, Samtani H, Sanyal SK, Srivastava AK, Suprasanna P and Pandey GK: VDAC and its interacting partners in plant and animal systems: An overview. Crit Rev Biotechnol. 40:715–732. 2020. View Article : Google Scholar : PubMed/NCBI | |
She H, Tan L, Du Y, Zhou Y, Guo N, Zhang J, Du Y, Wang Y, Wu Z, Ma C, et al: VDAC2 malonylation participates in sepsis-induced myocardial dysfunction via mitochondrial-related ferroptosis. Int J Biol Sci. 19:3143–3158. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Liu J, Bu X, Ma Z, Yao Y, Li J, Zhang T, Song W, Xiao X, Sun Y, et al: Targeting METTL3 reprograms the tumor microenvironment to improve cancer immunotherapy. Cell Chem Biol. 31:776–791.e7. 2024. View Article : Google Scholar : PubMed/NCBI | |
Shen H, Xie K, Tian Y and Wang X: N6-methyladenosine writer METTL3 accelerates the sepsis-induced myocardial injury by regulating m6A-dependent ferroptosis. Apoptosis. 28:514–524. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cao G, Zeng Y, Zhao Y, Lin L, Luo X, Guo L, Zhang Y and Cheng Q: H2S regulation of ferroptosis attenuates sepsis-induced cardiomyopathy. Mol Med Rep. 26:3352022. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Li P, Wang Y, Wang J, Lei J, Zhao J, Wu X, He W, Jia J, Miao J, et al: Yiqifumai injection ameliorated sepsis-induced cardiomyopathy by inhibition of ferroptosis via XCT/GPX4 axis. Shock. 61:638–645. 2024.PubMed/NCBI | |
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee R, Tetri LH, Li SJ, Fajardo G, Ostberg NP, Tsegay KB, Gera K, Cornell TT, Bernstein D, Mochly-Rosen D and Haileselassie B: Drp1/p53 interaction mediates p53 mitochondrial localization and dysfunction in septic cardiomyopathy. J Mol Cell Cardiol. 177:28–37. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gao N, Tang AL, Liu XY, Chen J and Zhang GQ: p53-dependent ferroptosis pathways in sepsis. Int Immunopharmacol. 118:1100832023. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Zhao X, Chen Q, Wang X, Wu Y and Zhao H: Quercetin ameliorates ferroptosis of rat cardiomyocytes via activation of the SIRT1/p53/SLC7A11 signaling pathway to alleviate sepsis-induced cardiomyopathy. Int J Mol Med. 52:1162023. View Article : Google Scholar : PubMed/NCBI | |
Qin S, Ren Y, Feng B, Wang X, Liu J, Zheng J, Li K, Chen M, Chen T, Mei H and Fu X: ANXA1sp protects against sepsis-induced myocardial injury by inhibiting ferroptosis-induced cardiomyocyte death via SIRT3-mediated p53 deacetylation. Mediators Inflamm. 2023:66389292023. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Monian P, Pan Q, Zhang W, Xiang J and Jiang X: Ferroptosis is an autophagic cell death process. Cell Res. 26:1021–1032. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mishima E and Conrad M: Nutritional and metabolic control of ferroptosis. Annu Rev Nutr. 42:275–309. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Peng L, Huo S, Peng D, Gou J, Shi W, Tao J, Jiang T, Jiang Y, Wang Q, et al: STAT3 signaling promotes cardiac injury by upregulating NCOA4-mediated ferritinophagy and ferroptosis in high-fat-diet fed mice. Free Radic Biol Med. 201:111–125. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ding H, Zheng Y, Wei X, Yang X, Wei H, Tian Y, Sun X, Wei W, Ma J, et al: Alleviated NCOA4-mediated ferritinophagy protected RA FLSs from ferroptosis in lipopolysaccharide-induced inflammation under hypoxia. Inflamm Res. 73:363–379. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li N, Wang W, Zhou H, Wu Q, Duan M, Liu C, Wu H, Deng W, Shen D and Tang Q: Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic Biol Med. 160:303–318. 2020. View Article : Google Scholar : PubMed/NCBI | |
Babaei-Abraki S, Karamali F and Nasr-Esfahani MH: Ferroptosis: The functions of Nrf2 in human embryonic stem cells. Cell Signal. 106:1106542023. View Article : Google Scholar : PubMed/NCBI | |
Chang LC, Chiang SK, Chen SE, Yu YL, Chou RH and Chang WC: Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett. 416:124–137. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Yuan W, Hu A, Lin J, Xia Z, Yang CF, Li Y and Zhang Z: Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury. Mol Med Rep. 22:175–184. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pietrangelo A: Ferroportin disease: Pathogenesis, diagnosis and treatment. Haematologica. 102:1972–1984. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Guan P, Chen Y, Xu M, Wang N and Ji E: Cyclovirobuxine D pretreatment ameliorates septic heart injury through mitigation of ferroptosis. Exp Ther Med. 26:4072023. View Article : Google Scholar : PubMed/NCBI | |
Kong C, Ni X, Wang Y, Zhang A, Zhang Y, Lin F, Li S, Lv Y, Zhu J, Yao X, et al: ICA69 aggravates ferroptosis causing septic cardiac dysfunction via STING trafficking. Cell Death Discov. 8:1872022. View Article : Google Scholar : PubMed/NCBI | |
Gu Q, Xu F, Orgil BO, Khuchua Z, Munkhsaikhan U, Johnson JN, Alberson NR, Pierre JF, Black DD, Dong D, et al: Systems genetics analysis defines importance of TMEM43/LUMA for cardiac- and metabolic-related pathways. Physiol Genomics. 54:22–35. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Cao Z, Gui F, Zhang M, Wu X, Peng H, Yu B, Li W, Ai F and Zhang J: TMEM43 protects against sepsis-induced cardiac injury via inhibiting ferroptosis in mice. Cells. 11:29922022. View Article : Google Scholar : PubMed/NCBI | |
Deng W, Ren G, Luo J, Gao S, Huang W, Liu W and Ye S: TRPM7 mediates endoplasmic reticulum stress and ferroptosis in sepsis-induced myocardial injury. J Bioenerg Biomembr. 55:207–217. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jiang C, Shi Q, Yang J, Ren H, Zhang L, Chen S, Si J, Liu Y, Sha D, Xu B and Ni J: Ceria nanozyme coordination with curcumin for treatment of sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation. J Adv Res. 63:159–170. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jiao Y, Zhang Q, Zhang J, Zha Y, Wang J, Li Y and Zhang S: Platelet-rich plasma ameliorates lipopolysaccharide-induced cardiac injury by inflammation and ferroptosis regulation. Front Pharmacol. 13:10266412022. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Zhang J, Chen Y, Liu Y, Tang X, Xia P, Yu P and Yu S: Puerarin protects against sepsis-induced myocardial injury through AMPK-mediated ferroptosis signaling. Aging (Albany NY). 14:3617–3632. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Yu Y, Hu L, Yang Y, Yuan Y, Zhang W, Luo J and Yu L: Correction to: Matrine alleviates sepsis-induced myocardial injury by inhibiting ferroptosis and apoptosis. Inflammation. 47:15452024. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Fu W, Zou B and Zhang F: Tectorigenin relieved sepsis-induced myocardial ferroptosis by inhibiting the expression of Smad3. Toxicol Res (Camb). 12:520–526. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Cao G, Lin L, Zhang Y, Luo X, Ma X, Aiyisake A and Cheng Q: Resveratrol attenuates sepsis-induced cardiomyopathy in rats through anti-ferroptosis via the Sirt1/Nrf2 pathway. J Invest Surg. 36:21575212023. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Simayi A, Fu J, Zhao X and Xu G: Resveratrol mediates the miR-149/HMGB1 axis and regulates the ferroptosis pathway to protect myocardium in endotoxemia mice. Am J Physiol Endocrinol Metab. 323:E21–E32. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Luo T and Wang J: Gene interfered-ferroptosis therapy for cancers. Nat Commun. 12:53112021. View Article : Google Scholar : PubMed/NCBI | |
Vinik Y, Maimon A, Dubey V, Raj H, Abramovitch I, Malitsky S, Itkin M, Ma'ayan A, Westermann F, Gottlieb E, et al: Programming a ferroptosis-to-apoptosis transition landscape revealed ferroptosis biomarkers and repressors for cancer therapy. Adv Sci (Weinh). 11:e23072632024. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Li L, Li Y, Lu N, Qin H, Wang R, Li W, Cheng Z, Li Z, Kang P, et al: Knockdown of LncRNA Lcn2-204 alleviates sepsis-induced myocardial injury by regulation of iron overload and ferroptosis. J Mol Cell Cardiol. 192:79–93. 2024. View Article : Google Scholar : PubMed/NCBI | |
Song J, Ren K, Zhang D, Lv X, Sun L, Deng Y and Zhu H: A novel signature combing cuproptosis- and ferroptosis-related genes in sepsis-induced cardiomyopathy. Front Genet. 14:11707372023. View Article : Google Scholar : PubMed/NCBI | |
Zou HX, Hu T, Zhao JY, Qiu BQ, Zou CC, Xu QR, Liu JC, Lai SQ and Huang H: Exploring dysregulated ferroptosis-related genes in septic myocardial injury based on human heart transcriptomes: Evidence and new insights. J Inflamm Res. 16:995–1015. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Ji F, Lin KQ, Zhu YT, Yang W, Zhang LH, Zhao JG and Pei YH: LPS-aggravated ferroptosis via disrupting circadian rhythm by Bmal1/AKT/p53 in sepsis-induced myocardial injury. Inflammation. 46:1133–1143. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xu Y and Bu G: Identification of two novel ferroptosis-associated targets in sepsis-induced cardiac injury: Hmox1 and Slc7a11. Front Cardiovasc Med. 10:11859242023. View Article : Google Scholar : PubMed/NCBI | |
Lu SM, Yang B, Tan ZB, Wang HJ, Xie JD, Xie MT, Jiang WH, Huang JZ, Li J, Zhang L, et al: TaoHe ChengQi decoction ameliorates sepsis-induced cardiac dysfunction through anti-ferroptosis via the Nrf2 pathway. Phytomedicine. 129:1555972024. View Article : Google Scholar : PubMed/NCBI | |
Lu JS, Wang JH, Han K and Li N: Nicorandil regulates ferroptosis and mitigates septic cardiomyopathy via TLR4/SLC7A11 signaling pathway. Inflammation. 47:975–988. 2024. View Article : Google Scholar : PubMed/NCBI | |
Singh D, Singh R and Akindele AJ: Therapeutic potential of nicorandil beyond anti-anginal drug: A review on current and future perspectives. Heliyon. 10:e289222024. View Article : Google Scholar : PubMed/NCBI | |
Zeng T, Zhou Y, Yu Y, Wang JW, Wu Y, Wang X, Zhu L, Zhou LM and Wan LH: rmMANF prevents sepsis-associated lung injury via inhibiting endoplasmic reticulum stress-induced ferroptosis in mice. Int Immunopharmacol. 114:1096082023. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Ren J, Zhou H, He R, Li D, Xiong R, He Z and Cheng D: TMEM16A deficiency in alveolar type 2 epithelial cells protected against endoplasmic reticulum stress-induced ferroptosis during acute lung injury. Int Immunopharmacol. 125:1112082023. View Article : Google Scholar : PubMed/NCBI |