
Role of multi‑omics in advancing the understanding and treatment of prostate cancer (Review)
- Authors:
- Li Yan
- Pengxiao Su
- Xiaoke Sun
-
Affiliations: Department of Urology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China, Department of Urology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China - Published online on: March 18, 2025 https://doi.org/10.3892/mmr.2025.13495
- Article Number: 130
-
Copyright: © Yan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Patel VL, Busch EL, Friebel TM, Cronin A, Leslie G, McGuffog L, Adlard J, Agata S, Agnarsson BA, Ahmed M, et al: Association of genomic domains in BRCA1 and BRCA2 with prostate cancer risk and aggressiveness. Cancer Res. 80:624–638. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ziglioli F, Patera A, Isgrò G, Campobasso D, Guarino G and Maestroni U: Impact of modifiable lifestyle risk factors for prostate cancer prevention: A review of the literature. Front Oncol. 13:12037912023. View Article : Google Scholar : PubMed/NCBI | |
Varaprasad GL, Gupta VK, Prasad K, Kim E, Tej MB, Mohanty P, Verma HK, Raju GSR, Bhaskar L and Huh YS: Recent advances and future perspectives in the therapeutics of prostate cancer. Exp Hematol Oncol. 12:802023. View Article : Google Scholar : PubMed/NCBI | |
Wasim S, Lee SY and Kim J: Complexities of prostate cancer. Int J Mol Sci. 23:142572022. View Article : Google Scholar : PubMed/NCBI | |
Catalona WJ: Screening for prostate cancer. Lancet. 343:14371994.PubMed/NCBI | |
Heijnsdijk EA, Wever EM, Auvinen A, Hugosson J, Ciatto S, Nelen V, Kwiatkowski M, Villers A, Páez A, Moss SM, et al: Quality-of-life effects of prostate-specific antigen screening. N Engl J Med. 367:595–605. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Liu Z, Yu W, Huang H, Wang Y and Niu Y: Investigating high-risk factors, precise diagnosis, and treatment of castration-resistant prostate cancer (CRPC). Comb Chem High Throughput Screen. 27:2598–2608. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cai M, Song XL, Li XA, Chen M, Guo J, Yang DH, Chen Z and Zhao SC: Current therapy and drug resistance in metastatic castration-resistant prostate cancer. Drug Resist Updat. 68:1009622023. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Kandalai S, Zhou X, Hossain F and Zheng Q: Applying multi-omics toward tumor microbiome research. Imeta. 2:e732023. View Article : Google Scholar : PubMed/NCBI | |
He X, Liu X, Zuo F, Shi H and Jing J: Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol. 88:187–200. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sato G, Shirai Y, Namba S, Edahiro R, Sonehara K, Hata T, Uemura M, Biobank Japan Project, Matsuda K, Doki Y, et al: Pan-cancer and cross-population genome-wide association studies dissect shared genetic backgrounds underlying carcinogenesis. Nat Commun. 14:36712023. View Article : Google Scholar : PubMed/NCBI | |
Uo T, Sprenger CC and Plymate SR: Androgen receptor signaling and metabolic and cellular plasticity during progression to castration resistant prostate cancer. Front Oncol. 10:5806172020. View Article : Google Scholar : PubMed/NCBI | |
Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, et al: Integrative clinical genomics of advanced prostate cancer. Cell. 161:1215–1228. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chi KN, Barnicle A, Sibilla C, Lai Z, Corcoran C, Barrett JC, Adelman CA, Qiu P, Easter A, Dearden S, et al: Detection of BRCA1, BRCA2, and ATM alterations in matched tumor tissue and circulating tumor DNA in patients with prostate cancer screened in PROfound. Clin Cancer Res. 29:81–91. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wokołorczyk D, Kluźniak W, Stempa K, Rusak B, Huzarski T, Gronwald J, Gliniewicz K, Kashyap A, Morawska S, Dębniak T, et al: PALB2 mutations and prostate cancer risk and survival. Br J Cancer. 125:569–575. 2021. View Article : Google Scholar : PubMed/NCBI | |
Karlsson Q, Brook MN, Dadaev T, Wakerell S, Saunders EJ, Muir K, Neal DE, Giles GG, MacInnis RJ, Thibodeau SN, et al: Rare germline variants in ATM predispose to prostate cancer: A PRACTICAL consortium study. Eur Urol Oncol. 4:570–579. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alorjani M, Aburub M, Al-Trad B, Hamad MA, AbuAlarja M, Bashir SA, Al-Batayneh K and Zoubi MA: The prevalence of CHEK1 and CHEK2 mutations in prostate cancer: A Retrospective cohort study. Med Arch. 77:8–12. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sharma M, Yang Z and Miyamoto H: Loss of DNA mismatch repair proteins in prostate cancer. Medicine (Baltimore). 99:e201242020. View Article : Google Scholar : PubMed/NCBI | |
Rusak B, Kluźniak W, Wokołorczykv D, Stempa K, Kashyap A, Gronwald J, Huzarski T, Dębniak T, Jakubowska A, Masojć B, et al: Inherited NBN mutations and prostate cancer risk and survival. Cancer Res Treat. 51:1180–1187. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maxwell KN, Cheng HH, Powers J, Gulati R, Ledet EM, Morrison C, Le A, Hausler R, Stopfer J, Hyman S, et al: Inherited TP53 variants and risk of prostate cancer. Eur Urol. 81:243–250. 2022. View Article : Google Scholar : PubMed/NCBI | |
Imada EL, Sanchez DF, Dinalankara W, Vidotto T, Ebot EM, Tyekucheva S, Franco GR, Mucci LA, Loda M, Schaeffer EM, et al: Transcriptional landscape of PTEN loss in primary prostate cancer. BMC Cancer. 21:8562021. View Article : Google Scholar : PubMed/NCBI | |
Goldberg H, Spratt D, Chandrasekar T, Klaassen Z, Wallis CJD, Santiago-Jimenez M, Fishbane N, Davicioni E, Noorani R, Ahmad AE, et al: Clinical-genomic characterization unveils more aggressive disease features in elderly prostate cancer patients with low-grade disease. Eur Urol Focus. 7:797–806. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ikeda S, Elkin SK, Tomson BN, Carter JL and Kurzrock R: Next-generation sequencing of prostate cancer: Genomic and pathway alterations, potential actionability patterns, and relative rate of use of clinical-grade testing. Cancer Biol Ther. 20:219–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kalampokis N, Zabaftis C, Spinos T, Karavitakis M, Leotsakos I, Katafigiotis I, van der Poel H, Grivas N and Mitropoulos D: Review on the role of BRCA mutations in genomic screening and risk stratification of prostate cancer. Curr Oncol. 31:1162–1169. 2024. View Article : Google Scholar : PubMed/NCBI | |
He Y, Xu W, Xiao YT, Huang H, Gu D and Ren S: Targeting signaling pathways in prostate cancer: Mechanisms and clinical trials. Signal Transduct Target Ther. 7:1982022. View Article : Google Scholar : PubMed/NCBI | |
de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, Chi KN, Sartor O, Agarwal N, Olmos D, et al: Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 382:2091–2102. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kulda V, Topolcan O, Kucera R, Kripnerova M, Srbecka K, Hora M, Hes O, Klecka J, Babuska V, Rousarova M, et al: Prognostic significance of TMPRSS2-ERG fusion gene in prostate cancer. Anticancer Res. 36:4787–4793. 2016. View Article : Google Scholar : PubMed/NCBI | |
Song C and Chen H: Predictive significance of TMRPSS2-ERG fusion in prostate cancer: A meta-analysis. Cancer Cell Int. 18:1772018. View Article : Google Scholar : PubMed/NCBI | |
Álvarez-Garcia V, Tawil Y, Wise HM and Leslie NR: Mechanisms of PTEN loss in cancer: It's all about diversity. Semin Cancer Biol. 59:66–79. 2019. View Article : Google Scholar : PubMed/NCBI | |
LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V and Gerald WL: Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res. 62:4499–4506. 2002.PubMed/NCBI | |
Itkonen HM, Urbanucci A, Martin SE, Khan A, Mathelier A, Thiede B, Walker S and Mills IG: High OGT activity is essential for MYC-driven proliferation of prostate cancer cells. Theranostics. 9:2183–2197. 2019. View Article : Google Scholar : PubMed/NCBI | |
Prensner JR, Chen W, Han S, Iyer MK, Cao Q, Kothari V, Evans JR, Knudsen KE, Paulsen MT, Ljungman M, et al: The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia. 16:900–908. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Lv G, Xiu R, Yang H, Wang W, Yu P, Zhang J, Ye L, Wang H and Tian J: Novel selective agents for the degradation of AR/AR-V7 to treat advanced prostate cancer. Eur J Med Chem. 271:1164002024. View Article : Google Scholar : PubMed/NCBI | |
de Wet L, Williams A, Gillard M, Kregel S, Lamperis S, Gutgesell LC, Vellky JE, Brown R, Conger K, Paner GP, et al: SOX2 mediates metabolic reprogramming of prostate cancer cells. Oncogene. 41:1190–1202. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yi Q, Han X, Yu HG, Chen HY, Qiu D, Su J, Lin R, Batist G and Wu JH: SC912 inhibits AR-V7 activity in castration-resistant prostate cancer by targeting the androgen receptor N-terminal domain. Oncogene. 43:1522–1533. 2024. View Article : Google Scholar : PubMed/NCBI | |
Verma P, Shukla N, Kumari S, Ansari MS, Gautam NK and Patel GK: Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer. 1878:1888872023. View Article : Google Scholar : PubMed/NCBI | |
Grimm D, Bauer J, Wise P, Krüger M, Simonsen U, Wehland M, Infanger M and Corydon TJ: The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol. 67((Pt 1)): 122–153. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fu Q, Wang F, Yang J, Sun W, Hu Z, Xu L, Chu H, Wang X and Zhang W: Long non-coding RNA-PCGEM1 contributes to prostate cancer progression by sponging microRNA miR-129-5p to enhance chromatin licensing and DNA replication factor 1 expression. Bioengineered. 13:9411–9424. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mu X, Shen Z, Lin Y, Xiao J, Xia K, Xu C, Chen B, Shi R, Zhu A, Sun X, et al: LncRNA-MALAT1 regulates cancer glucose metabolism in prostate cancer via MYBL2/mTOR axis. Oxid Med Cell Longev. 2022:86932592022. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Chen D, Yang F and Xing N: Quercetin inhibits epithelial-to-mesenchymal transition (EMT) process and promotes apoptosis in prostate cancer via downregulating lncRNA MALAT1. Cancer Manag Res. 12:1741–1750. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zeng H, Huang Y, Liu Q, Liu H, Long T, Zhu C and Wu X: MiR-145 suppresses the motility of prostate cancer cells by targeting cadherin-2. Mol Cell Biochem. 476:3635–3646. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gui B, Hsieh CL, Kantoff PW, Kibel AS and Jia L: Androgen receptor-mediated downregulation of microRNA-221 and −222 in castration-resistant prostate cancer. PLoS One. 12:e01841662017. View Article : Google Scholar : PubMed/NCBI | |
Ferreira M, Morais M, Medeiros R and Teixeira AL: MicroRNAs as promising therapeutic agents against prostate cancer resistant to castration-where are we now? Pharmaceutics. 16:13472024. View Article : Google Scholar : PubMed/NCBI | |
Pungsrinont T, Kallenbach J and Baniahmad A: Role of PI3K-AKT-mTOR pathway as a pro-survival signaling and resistance-mediating mechanism to therapy of prostate cancer. Int J Mol Sci. 22:110882021. View Article : Google Scholar : PubMed/NCBI | |
Eberlein C, Williamson SC, Hopcroft L, Ros S, Moss JI, Kerr J, van Weerden WM, de Bruin EC, Dunn S, Willis B, et al: Capivasertib combines with docetaxel to enhance anti-tumour activity through inhibition of AKT-mediated survival mechanisms in prostate cancer. Br J Cancer. 130:1377–1387. 2024. View Article : Google Scholar : PubMed/NCBI | |
Guan H, Liu C, Fang F, Huang Y, Tao T, Ling Z, You Z, Han X, Chen S, Xu B and Chen M: MicroRNA-744 promotes prostate cancer progression through aberrantly activating Wnt/β-catenin signaling. Oncotarget. 8:14693–14707. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Wu R, Mei F, Zhou Y, He L, Liu Y, Zhao X, You J, Liu B, Meng Q and Pei F: Phosphorylated LASS2 inhibits prostate carcinogenesis via negative regulation of Wnt/β-catenin signaling. J Cell Biochem. Apr 14–2021.(Epub ahead of print). View Article : Google Scholar | |
Marei HE, Hasan A, Pozzoli G and Cenciarelli C: Cancer immunotherapy with immune checkpoint inhibitors (ICIs): Potential, mechanisms of resistance, and strategies for reinvigorating T cell responsiveness when resistance is acquired. Cancer Cell Int. 23:642023. View Article : Google Scholar : PubMed/NCBI | |
Jia D, Zhao M, Zhang X, Cheng X, Wei Q, Lou L, Zhao Y, Jin Q, Chen M and Zhang D: Transcriptomic analysis reveals the critical role of chemokine signaling in the anti-atherosclerosis effect of Xuefu Zhuyu decoction. J Ethnopharmacol. 332:1182452024. View Article : Google Scholar : PubMed/NCBI | |
Conley-LaComb MK, Saliganan A, Kandagatla P, Chen YQ, Cher ML and Chinni SR: PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling. Mol Cancer. 12:852013. View Article : Google Scholar : PubMed/NCBI | |
Hatano K and Nonomura N: Systemic therapies for metastatic castration-resistant prostate cancer: An updated review. World J Mens Health. 41:769–784. 2023. View Article : Google Scholar : PubMed/NCBI | |
de Kouchkovsky I, Rao A, Carneiro BA, Zhang L, Lewis C, Phone A, Small EJ, Friedlander T, Fong L, Paris PL, et al: A phase Ib/II study of the CDK4/6 inhibitor ribociclib in combination with docetaxel plus prednisone in metastatic castration-resistant prostate cancer. Clin Cancer Res. 28:1531–1539. 2022. View Article : Google Scholar : PubMed/NCBI | |
Agarwal N, Castellano D, Alonso-Gordoa T, Arranz Arija JA, Colomba E, Gravis G, Mourey L, Oudard S, Fléchon A, González M, et al: A signal-finding study of abemaciclib in heavily pretreated patients with metastatic castration-resistant prostate cancer: Results from CYCLONE 1. Clin Cancer Res. 30:2377–2383. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tshering LF, Luo F, Russ S, Szenk M, Rubel D, Tutuska K, Rail JG, Balázsi G, Shen MM and Talos F: Immune mechanisms shape the clonal landscape during early progression of prostate cancer. Dev Cell. 58:1071–1086.e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
Rebuzzi SE, Rescigno P, Catalano F, Mollica V, Vogl UM, Marandino L, Massari F, Pereira Mestre R, Zanardi E, Signori A, et al: Immune checkpoint inhibitors in advanced prostate cancer: Current data and future perspectives. Cancers (Basel). 14:12452022. View Article : Google Scholar : PubMed/NCBI | |
Shuken SR: An introduction to mass spectrometry-based proteomics. J Proteome Res. 22:2151–2171. 2023. View Article : Google Scholar : PubMed/NCBI | |
Al-Daffaie FM, Al-Mudhafar SF, Alhomsi A, Tarazi H, Almehdi AM, El-Huneidi W, Abu-Gharbieh E, Bustanji Y, Alqudah MAY, Abuhelwa AY, et al: Metabolomics and proteomics in prostate cancer research: Overview, analytical techniques, data analysis, and recent clinical applications. Int J Mol Sci. 25:50712024. View Article : Google Scholar : PubMed/NCBI | |
Lee PY, Saraygord-Afshari N and Low TY: The evolution of two-dimensional gel electrophoresis - from proteomics to emerging alternative applications. J Chromatogr A. 1615:4607632020. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Weiss T, Zhang Q, Sun R, Wang B, Yi X, Wu Z, Gao H, Cai X, Ruan G, et al: High-throughput proteomic analysis of FFPE tissue samples facilitates tumor stratification. Mol Oncol. 13:2305–2328. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aurilio G, Cimadamore A, Mazzucchelli R, Lopez-Beltran A, Verri E, Scarpelli M, Massari F, Cheng L, Santoni M and Montironi R: Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications. Cells. 9:26532020. View Article : Google Scholar : PubMed/NCBI | |
Dai C, Dehm SM and Sharifi N: Targeting the androgen signaling axis in prostate cancer. J Clin Oncol. 41:4267–4278. 2023. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Zhou Q, Zhang JL, Ouyang J and Zhang ZY: Marker Ki-67 is a potential biomarker for the diagnosis and prognosis of prostate cancer based on two cohorts. World J Clin Cases. 12:32–41. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Yin Y, Li Y, Chen X, Chang Y, Zhang H, Liu J, Beasley J, McCaw P, Zhang H, et al: A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer. Proc Natl Acad Sci USA. 118:e20127481182021. View Article : Google Scholar : PubMed/NCBI | |
Jiang B, Zhang J, Zhao G, Liu M, Hu J, Lin F, Wang J, Zhao W, Ma H, Zhang C, et al: Filamentous GLS1 promotes ROS-induced apoptosis upon glutamine deprivation via insufficient asparagine synthesis. Mol Cell. 82:1821–1835.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tampio J, Montaser AB, Järvinen J, Lehtonen M, Jalkanen AJ, Reinisalo M, Kokkola T, Terasaki T, Laakso M, Rysä J, et al: The L-type amino acid transporter 1 enhances drug delivery to the mouse pancreatic beta cell line (MIN6). Eur J Pharm Sci. 203:1069372024. View Article : Google Scholar : PubMed/NCBI | |
Chidley C, Darnell AM, Gaudio BL, Lien EC, Barbeau AM, Vander Heiden MG and Sorger PK: A CRISPRi/a screening platform to study cellular nutrient transport in diverse microenvironments. Nat Cell Biol. 26:825–838. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Sakamoto S, Matsushima J, Kimura T, Ueda T, Mizokami A, Kanai Y and Ichikawa T: Up-regulation of LAT1 during antiandrogen therapy contributes to progression in prostate cancer cells. J Urol. 195:1588–1597. 2016. View Article : Google Scholar : PubMed/NCBI | |
Saito S, Ando K, Sakamoto S, Xu M, Yamada Y, Rii J, Kanaoka S, Wei J, Zhao X, Pae S, et al: The LAT1 inhibitor JPH203 suppresses the growth of castration-resistant prostate cancer through a CD24-mediated mechanism. Cancer Sci. 115:2461–2472. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hoter A, Rizk S and Naim HY: The multiple roles and therapeutic potential of molecular chaperones in prostate cancer. Cancers (Basel. 11:11942019. View Article : Google Scholar : PubMed/NCBI | |
Mori M, Hitora T, Nakamura O, Yamagami Y, Horie R, Nishimura H and Yamamoto T: Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int J Oncol. 46:47–54. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rastogi S, Joshi A, Sato N, Lee S, Lee MJ, Trepel JB and Neckers L: An update on the status of HSP90 inhibitors in cancer clinical trials. Cell Stress Chaperones. 29:519–539. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tausif YM, Thekkekkara D, Sai TE, Jahagirdar V, Arjun HR, Meheronnisha HK, Babu A and Banerjee A: Heat shock protein paradigms in cancer progression: future therapeutic perspectives. 3 Biotech. 14:962024. View Article : Google Scholar : PubMed/NCBI | |
Souza DS, Macheroni C, Pereira GJS, Vicente CM and Porto CS: Molecular regulation of prostate cancer by Galectin-3 and estrogen receptor. Front Endocrinol (Lausanne). 14:11241112023. View Article : Google Scholar : PubMed/NCBI | |
Keizman D, Frenkel M, Peer A, Rosenbaum E, Sarid D, Leibovitch I, Mano R, Yossepowitch O, Wolf I, Geva R, et al: Modified citrus pectin treatment in non-metastatic biochemically relapsed prostate cancer: Long-term results of a prospective phase II study. Nutrients. 15:35332023. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Li Z, Feng X, Yang D and Lin M: Advances in PSMA-targeted therapy for prostate cancer. Prostate Cancer Prostatic Dis. 25:11–26. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Zhuo H, Li T, Zhang J, Tan M and Chen Y: Advancements in PSMA ligand radiolabeling for diagnosis and treatment of prostate cancer: A systematic review. Front Oncol. 14:13736062024. View Article : Google Scholar : PubMed/NCBI | |
Bakht MK and Beltran H: Biological determinants of PSMA expression, regulation and heterogeneity in prostate cancer. Nat Rev Urol. 22:26–45. 2025. View Article : Google Scholar : PubMed/NCBI | |
Fu P, Bu C, Cui B, Li N and Wu J: Screening of differentially expressed genes and identification of AMACR as a prognostic marker in prostate cancer. Andrologia. 53:e140672021. View Article : Google Scholar : PubMed/NCBI | |
Carswell BM, Woda BA, Wang X, Li C, Dresser K and Jiang Z: Detection of prostate cancer by alpha-methylacyl CoA racemase (P504S) in needle biopsy specimens previously reported as negative for malignancy. Histopathology. 48:668–673. 2006. View Article : Google Scholar : PubMed/NCBI | |
Quail DF and Walsh DA: Revolutionizing cancer research with spatial proteomics and visual intelligence. Nat Methods. 21:2216–2219. 2024. View Article : Google Scholar : PubMed/NCBI | |
Osmulski PA, Cunsolo A, Chen M, Qian Y, Lin CL, Hung CN, Mahalingam D, Kirma NB, Chen CL, Taverna JA, et al: Contacts with macrophages promote an aggressive nanomechanical phenotype of circulating tumor cells in prostate cancer. Cancer Res. 81:4110–4123. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hsieh WC, Budiarto BR, Wang YF, Lin CY, Gwo MC, So DK, Tzeng YS and Chen SY: Spatial multi-omics analyses of the tumor immune microenvironment. J Biomed Sci. 29:962022. View Article : Google Scholar : PubMed/NCBI | |
Kowalczyk T, Ciborowski M, Kisluk J, Kretowski A and Barbas C: Mass spectrometry based proteomics and metabolomics in personalized oncology. Biochim Biophys Acta Mol Basis Dis. 1866:1656902020. View Article : Google Scholar : PubMed/NCBI | |
Zhong AB, Muti IH, Eyles SJ, Vachet RW, Sikora KN, Bobst CE, Calligaris D, Stopka SA, Agar JN, Wu CL, et al: Multiplatform metabolomics studies of human cancers with NMR and mass spectrometry imaging. Front Mol Biosci. 9:7852322022. View Article : Google Scholar : PubMed/NCBI | |
Li R, Li L, Xu Y and Yang J: Machine learning meets omics: Applications and perspectives. Brief Bioinform. 23:bbab4602022. View Article : Google Scholar : PubMed/NCBI | |
Ritterson Lew C, Guin S and Theodorescu D: Targeting glycogen metabolism in bladder cancer. Nat Rev Urol. 12:383–391. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chetta P, Sriram R and Zadra G: Lactate as key metabolite in prostate cancer progression: What are the clinical implications? Cancers (Basel). 15:34732023. View Article : Google Scholar : PubMed/NCBI | |
Gatenby RA and Gillies RJ: Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 4:891–899. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Xu YX, Wang YS and Zhou JL: Lipid metabolism, amino acid metabolism, and prostate cancer: A crucial metabolic journey. Asian J Androl. 26:123–134. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zeković M, Bumbaširević U, Živković M and Pejčić T: Alteration of lipid metabolism in prostate cancer: Multifaceted oncologic implications. Int J Mol Sci. 24:13912023. View Article : Google Scholar : PubMed/NCBI | |
Škara L, Huđek Turković A, Pezelj I, Vrtarić A, Sinčić N, Krušlin B and Ulamec M: Prostate cancer-focus on cholesterol. Cancers (Basel). 13:46962021. View Article : Google Scholar : PubMed/NCBI | |
Yun SJ, Yan C, Jeong P, Kang HW, Kim YH, Kim EA, Lee OJ, Kim WT, Moon SK, Kim IY, et al: Comparison of mRNA, protein, and urinary nucleic acid levels of S100A8 and S100A9 between prostate cancer and BPH. Ann Surg Oncol. 22:2439–2445. 2015. View Article : Google Scholar : PubMed/NCBI | |
Srihari S, Kwong R, Tran K, Simpson R, Tattam P and Smith E: Metabolic deregulation in prostate cancer. Mol Omics. 14:320–329. 2018. View Article : Google Scholar : PubMed/NCBI | |
Singh R and Mills IG: The interplay between prostate cancer genomics, metabolism, and the epigenome: Perspectives and future prospects. Front Oncol. 11:7043532021. View Article : Google Scholar : PubMed/NCBI | |
Penney KL, Tyekucheva S, Rosenthal J, El Fandy H, Carelli R, Borgstein S, Zadra G, Fanelli GN, Stefanizzi L, Giunchi F, et al: Metabolomics of prostate cancer gleason score in tumor tissue and serum. Mol Cancer Res. 19:475–484. 2021. View Article : Google Scholar : PubMed/NCBI | |
Salciccia S, Capriotti AL, Laganà A, Fais S, Logozzi M, De Berardinis E, Busetto GM, Di Pierro GB, Ricciuti GP, Del Giudice F, et al: Biomarkers in prostate cancer diagnosis: from current knowledge to the role of metabolomics and exosomes. Int J Mol Sci. 22:43672021. View Article : Google Scholar : PubMed/NCBI | |
Bansal N, Kumar M, Sankhwar SN and Gupta A: Evaluation of prostate cancer tissue metabolomics: Would clinics utilise it for diagnosis? Expert Rev Mol Med. 25:e262023. View Article : Google Scholar : PubMed/NCBI | |
Lima AR, Carvalho M, Aveiro SS, Melo T, Domingues MR, Macedo-Silva C, Coimbra N, Jerónimo C, Henrique R, Bastos ML, et al: Comprehensive metabolomics and lipidomics profiling of prostate cancer tissue reveals metabolic dysregulations associated with disease development. J Proteome Res. 21:727–739. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sirocchi C, Bogliolo A and Montagna S: Medical-informed machine learning: Integrating prior knowledge into medical decision systems. BMC Med Inform Decis Mak. 24 (Suppl 4):S1862024. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Liu R, Gao W, Wang X and Zhang Y: Single-cell omics traces the heterogeneity of prostate cancer cells and the tumor microenvironment. Cell Mol Biol Lett. 28:382023. View Article : Google Scholar : PubMed/NCBI | |
Murphy N, Shah P, Shih A, Khalili H, Liew A, Zhu X and Lee A: Single-cell sequencing in genitourinary malignancies. Adv Exp Med Biol. 1255:153–164. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Sheng Y, Qian W, Pan M, Zhao X and Ge Q: scRNA-seq data analysis method to improve analysis performance. IET Nanobiotechnol. 17:246–256. 2023. View Article : Google Scholar : PubMed/NCBI | |
Song H, Weinstein HNW, Allegakoen P, Wadsworth MH II, Xie J, Yang H, Castro EA, Lu KL, Stohr BA, Feng FY, et al: Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states. Nat Commun. 13:1412022. View Article : Google Scholar : PubMed/NCBI | |
Feng DC, Zhu WZ, Wang J, Li DX, Shi X, Xiong Q, You J, Han P, Qiu S, Wei Q and Yang L: The implications of single-cell RNA-seq analysis in prostate cancer: unraveling tumor heterogeneity, therapeutic implications and pathways towards personalized therapy. Mil Med Res. 11:212024.PubMed/NCBI | |
Amirifar L, Besanjideh M, Nasiri R, Shamloo A, Nasrollahi F, de Barros NR, Davoodi E, Erdem A, Mahmoodi M, Hosseini V, et al: Droplet-based microfluidics in biomedical applications. Biofabrication. 14:0220012022. View Article : Google Scholar | |
Xin S, Liu X, Li Z, Sun X, Wang R, Zhang Z, Feng X, Jin L, Li W, Tang C, et al: ScRNA-seq revealed an immunosuppression state and tumor microenvironment heterogeneity related to lymph node metastasis in prostate cancer. Exp Hematol Oncol. 12:492023. View Article : Google Scholar : PubMed/NCBI | |
Peng G, Wang C, Wang H, Qu M, Dong K, Yu Y, Jiang Y, Gan S and Gao X: Gankyrin-mediated interaction between cancer cells and tumor-associated macrophages facilitates prostate cancer progression and androgen deprivation therapy resistance. Oncoimmunology. 12:21734222023. View Article : Google Scholar : PubMed/NCBI | |
Mengistu BA, Tsegaw T, Demessie Y, Getnet K, Bitew AB, Kinde MZ, Beirhun AM, Mebratu AS, Mekasha YT, Feleke MG and Fenta MD: Comprehensive review of drug resistance in mammalian cancer stem cells: Implications for cancer therapy. Cancer Cell Int. 24:4062024. View Article : Google Scholar : PubMed/NCBI | |
Hu WY, Hu DP, Xie L, Nonn L, Lu R, Abern M, Shioda T and Prins GS: Keratin profiling by single-cell RNA-sequencing identifies human prostate stem cell lineage hierarchy and cancer stem-like cells. Int J Mol Sci. 22:81092021. View Article : Google Scholar : PubMed/NCBI | |
Muller L, Fauvet F, Chassot C, Angileri F, Coutant A, Dégletagne C, Tonon L, Saintigny P, Puisieux A, Morel AP, et al: EMT-driven plasticity prospectively increases cell-cell variability to promote therapeutic adaptation in breast cancer. Cancer Cell Int. 25:322025. View Article : Google Scholar : PubMed/NCBI | |
Wei G, Zhu H, Zhou Y, Pan Y, Yi B and Bai Y: Single-cell sequencing revealed metabolic reprogramming and its transcription factor regulatory network in prostate cancer. Transl Oncol. 44:1019252024. View Article : Google Scholar : PubMed/NCBI | |
Nguyen AD, Haines C, Price MJ, Dalton TE, Baëta CD, Hockenberry HA and Goodwin CR: Single-cell RNA sequencing comparison of the human metastatic prostate spine tumor microenvironment. STAR Protoc. 5:1028052024. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Lee M, Maslov AY, Montagna C, Vijg J and Dong X: Analyzing somatic mutations by single-cell whole-genome sequencing. Nat Protoc. 19:487–516. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zheng K, Hai Y, Xi Y, Zhang Y, Liu Z, Chen W, Hu X, Zou X and Hao J: Integrative multi-omics analysis unveils stemness-associated molecular subtypes in prostate cancer and pan-cancer: Prognostic and therapeutic significance. J Transl Med. 21:7892023. View Article : Google Scholar : PubMed/NCBI | |
Nevedomskaya E and Haendler B: From omics to multi-omics approaches for in-depth analysis of the molecular mechanisms of prostate cancer. Int J Mol Sci. 23:62812022. View Article : Google Scholar : PubMed/NCBI | |
Ren S, Li J, Dorado J, Sierra A, González-Díaz H, Duardo A and Shen B: From molecular mechanisms of prostate cancer to translational applications: Based on multi-omics fusion analysis and intelligent medicine. Health Inf Sci Syst. 12:62023. View Article : Google Scholar : PubMed/NCBI | |
Zhu Q, Zhao X, Zhang Y, Li Y, Liu S, Han J, Sun Z, Wang C, Deng D, Wang S, et al: Single cell multi-omics reveal intra-cell-line heterogeneity across human cancer cell lines. Nat Commun. 14:81702023. View Article : Google Scholar : PubMed/NCBI | |
Nabavizadeh A, Barkovich MJ, Mian A, Ngo V, Kazerooni AF and Villanueva-Meyer JE: Current state of pediatric neuro-oncology imaging, challenges and future directions. Neoplasia. 37:1008862023. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Mao L, Lei Q and Guo AY: Bioinformatics tools and resources for cancer and application. Chin Med J (Engl). 137:2052–2064. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty S, Sharma G, Karmakar S and Banerjee S: Multi-OMICS approaches in cancer biology: New era in cancer therapy. Biochim Biophys Acta Mol Basis Dis. 1870:1671202024. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Xiao X, Dong L, Tang C, Xiao G and Xu L: Cooperative integration of spatially resolved multi-omics data with COSMOS. Nat Commun. 16:272025. View Article : Google Scholar : PubMed/NCBI | |
Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J and Jasbi P: Navigating challenges and opportunities in multi-omics integration for personalized healthcare. Biomedicines. 12:14962024. View Article : Google Scholar : PubMed/NCBI | |
Viana JN, Pilbeam C, Howard M, Scholz B, Ge Z, Fisser C, Mitchell I, Raman S and Leach J: Maintaining high-touch in high-tech digital health monitoring and multi-omics prognostication: ethical, equity, and societal considerations in precision health for palliative care. OMICS. 27:461–473. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ramos-Lopez O, Martinez JA and Milagro FA: Holistic integration of omics tools for precision nutrition in health and disease. Nutrients. 14:40742022. View Article : Google Scholar : PubMed/NCBI | |
Ahmed Z: Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis. Hum Genomics. 14:352020. View Article : Google Scholar : PubMed/NCBI | |
Messina C, Giunta EF, Signori A, Rebuzzi SE, Banna GL, Maniam A, Buti S, Cattrini C, Fornarini G, Bauckneht M, et al: Combining PARP inhibitors and androgen receptor signalling inhibitors in metastatic prostate cancer: A quantitative synthesis and meta-analysis. Eur Urol Oncol. 7:179–188. 2024. View Article : Google Scholar : PubMed/NCBI | |
Markowski MC, Sternberg CN, Wang H, Wang T, Linville L, Marshall CH, Sullivan R, King S, Lotan TL and Antonarakis ES: TRIUMPH: Phase II trial of rucaparib monotherapy in patients with metastatic hormone-sensitive prostate cancer harboring germline homologous recombination repair gene mutations. Oncologist. 29:794–800. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gasmi A, Roubaud G, Dariane C, Barret E, Beauval JB, Brureau L, Créhange G, Fiard G, Fromont G, Gauthé M, et al: Overview of the development and use of akt inhibitors in prostate cancer. J Clin Med. 11:1602021. View Article : Google Scholar : PubMed/NCBI | |
Noori M, Azizi S, Mahjoubfar A, Abbasi Varaki F, Fayyaz F, Mousavian AH, Bashash D, Kardoust Parizi M and Kasaeian A: Efficacy and safety of immune checkpoint inhibitors for patients with prostate cancer: A systematic review and meta-analysis. Front Immunol. 14:11810512023. View Article : Google Scholar : PubMed/NCBI | |
Wei Z, Han D, Zhang C, Wang S, Liu J, Chao F, Song Z and Chen G: Deep learning-based multi-omics integration robustly predicts relapse in prostate cancer. Front Oncol. 12:8934242022. View Article : Google Scholar : PubMed/NCBI | |
Sinha A, Huang V, Livingstone J, Wang J, Fox NS, Kurganovs N, Ignatchenko V, Fritsch K, Donmez N, Heisler LE, et al: The proteogenomic landscape of curable prostate cancer. Cancer Cell. 35:414–427.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ozaki Y, Broughton P, Abdollahi H, Valafar H and Blenda AV: Integrating omics data and AI for cancer diagnosis and prognosis. Cancers (Basel). 16:24482024. View Article : Google Scholar : PubMed/NCBI | |
Baydoun A, Jia AY, Zaorsky NG, Kashani R, Rao S, Shoag JE, Vince RA Jr, Bittencourt LK, Zuhour R, Price AT, et al: Artificial intelligence applications in prostate cancer. Prostate Cancer Prostatic Dis. 27:37–45. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bian X, Wang W, Abudurexiti M, Zhang X, Ma W, Shi G, Du L, Xu M, Wang X, Tan C, et al: Integration analysis of single-cell multi-omics reveals prostate cancer heterogeneity. Adv Sci (Weinh). 11:e23057242024. View Article : Google Scholar : PubMed/NCBI | |
Fonseca NM, Maurice-Dror C, Herberts C, Tu W, Fan W, Murtha AJ, Kollmannsberger C, Kwan EM, Parekh K, Schönlau E, et al: Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. Nat Commun. 15:18282024. View Article : Google Scholar : PubMed/NCBI | |
Armstrong L, Willoughby CE and McKenna DJ: The suppression of the epithelial to mesenchymal transition in prostate cancer through the targeting of MYO6 Using MiR-145-5p. Int J Mol Sci. 25:43012024. View Article : Google Scholar : PubMed/NCBI | |
Yu B, Zuo X and Zhao C: Efficacy of abiraterone combined with prednisone in castration-resistant prostate cancer and its impact on miR-221/222 expression. Am J Cancer Res. 14:4708–4716. 2024. View Article : Google Scholar : PubMed/NCBI |