
Current research on mitochondria‑associated membranes in cardiovascular diseases (Review)
- Authors:
- Published online on: March 28, 2025 https://doi.org/10.3892/mmr.2025.13506
- Article Number: 141
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
Metrics:
Total
Views: 0 (Spandidos Publications: | PMC Statistics:
)
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics:
)
Abstract
The present study aimed to explore the role of mitochondria‑associated membranes (MAMs) as a key interface between mitochondria and the endoplasmic reticulum (ER) and to evaluate their importance in maintaining the physiological functions of these two organelles. MAMs not only act as a structural bridge between mitochondria and the ER but also widely participate in the regulation of mitochondrial biosynthesis and function, Ca2+ signal transduction, lipid metabolism, oxidative stress response and autophagy. In addition, the specific protein composition of MAMs is increasingly being recognized as having a profound impact on their function, and these proteins play a central role in regulating intercellular communication. Recently, the scientific community has accumulated a large amount of evidence supporting MAMs as potential targets for cardiovascular disease treatment. The present review focuses on the fine structure and multifunctional properties of MAMs and their mechanisms in the occurrence and development of cardiovascular diseases. The goal is to explore the mechanism of MAMs, therapeutic intervention points directly related to cardiovascular diseases, and feasibility of incorporating MAMs into the diagnostic strategy and treatment plan of cardiovascular diseases to provide novel insights and theoretical support for clinical practice in this field. MAMs have great potential as therapeutic targets for various cardiovascular diseases. This finding not only deepens the understanding of the interaction between organelles but also opens up a promising research path for the development of new therapeutic strategies for cardiovascular diseases.