You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Momenimovahed Z, Tiznobaik A, Taheri S and Salehiniya H: Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health. 11:287–299. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Siegel RL, Miller KD and Jemal A: Cancer Statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Luo Y, Huang J, Tang Y, Luo X, Ge L, Sheng X, Sun X, Chen Y and Zhu D: Regional methylome profiling reveals dynamic epigenetic heterogeneity and convergent hypomethylation of stem cell quiescence-associated genes in breast cancer following neoadjuvant chemotherapy. Cell Biosci. 9:162019. View Article : Google Scholar : PubMed/NCBI | |
|
Sandhu R, Roll JD, Rivenbark AG and Coleman WB: Dysregulation of the Epigenome in Human Breast Cancer': Contributions of gene-specific DNA hypermethylation to breast cancer pathobiology and targeting the breast cancer methylome for improved therapy. Am J Pathol. 185:282–292. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Maire CL, Fuh MM, Kaulich K, Fita KD, Stevic I, Heiland DH, Welsh JA, Jones JC, Görgens A, Ricklefs T, et al: Genome-wide methylation profiling of glioblastoma cell-derived extracellular vesicle DNA allows tumor classification. Neuro Oncol. 23:1087–1099. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Cui Y, Wang F, Xu L, Yan Y, Tong X and Yan H: DNA methylation-regulated LINC02587 inhibits ferroptosis and promotes the progression of glioma cells through the CoQ-FSP1 pathway. BMC Cancer. 23:9892023. View Article : Google Scholar : PubMed/NCBI | |
|
Wielandt AM, Villarroel C, Hurtado C, Simian D, Zamorano D, Martínez M, Castro M, Vial MT, Kronberg U and López-Kostner F: Characterization of patients with sporadic colorectal cancer following the new Consensus Molecular Subtypes (CMS). Rev Méd Chile. 145:419–430. 2017.(In Spanish). View Article : Google Scholar : PubMed/NCBI | |
|
Moreno-Ortiz JM, Jiménez-García J, Gutiérrez-Angulo M, Ayala-Madrigal MD, González-Mercado A, González-Villaseñor CO, Flores-López BA, Alvizo-Rodríguez C, Hernández-Sandoval JA, Fernández-Galindo MA, et al: High frequency of MLH1 promoter methylation mediated by gender and age in colorectal tumors from Mexican patients. GMM. 157:638–644. 2021.(In Spanish). | |
|
Del Castillo Falconi VM, Torres-Arciga K, Matus-Ortega G, Díaz-Chávez J and Herrera LA: DNA methyltransferases: From evolution to clinical applications. Int J Mol Sci. 23:89942022. View Article : Google Scholar : PubMed/NCBI | |
|
Li E, Bestor TH and Jaenisch R: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 69:915–926. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Shih IeM and Kurman RJ: Ovarian tumorigenesis: A proposed model based on morphological and molecular genetic analysis. Am J Pathol. 164:1511–1518. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Kurman RJ and Shih IeM: Pathogenesis of ovarian cancer: Lessons from morphology and molecular biology and their clinical implications. Int J Gynecol Pathol. 27:151–160. 2018.PubMed/NCBI | |
|
Kurman RJ and Shih IeM: The origin and pathogenesis of epithelial ovarian cancer: A proposed unifying theory. Am J Surg Pathol. 34:433–443. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Samuel D, Diaz-Barbe A, Pinto A, Schlumbrecht M and George S: Hereditary ovarian carcinoma: Cancer pathogenesis looking beyond BRCA1 and BRCA2. Cells. 11:5392022. View Article : Google Scholar : PubMed/NCBI | |
|
Ramus SJ, Harrington PA, Pye C, DiCioccio RA, Cox MJ, Garlinghouse-Jones K, Oakley-Girvan I, Jacobs IJ, Hardy RM, Whittemore AS, et al: Contribution of BRCA1 and BRCA2 mutations to inherited ovarian cancer. Hum Mutat. 28:1207–1215. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Menon U, Karpinskyj C and Gentry-Maharaj A: Ovarian cancer prevention and screening. Obstet Gynecol. 131:909–927. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lavoro A, Scalisi A, Candido S, Zanghì GN, Rizzo R, Gattuso G, Caruso G, Libra M and Falzone L: Identification of the most common BRCA alterations through analysis of germline mutation databases: Is droplet digital PCR an additional strategy for the assessment of such alterations in breast and ovarian cancer families? Int J Oncol. 60:582022. View Article : Google Scholar : PubMed/NCBI | |
|
Kansuttiviwat C, Lertwilaiwittaya P, Roothumnong E, Nakthong P, Dungort P, Meesamarnpong C, Tansa-Nga W, Pongsuktavorn K, Wiboonthanasarn S, Tititumjariya W, et al: Germline mutations of 4567 patients with hereditary breast-ovarian cancer spectrum in Thailand. NPJ Genom Med. 9:92024. View Article : Google Scholar : PubMed/NCBI | |
|
Andrikopoulou A, Zografos E, Apostolidou K, Kyriazoglou A, Papatheodoridi AM, Kaparelou M, Koutsoukos K, Liontos M, Dimopoulos MA and Zagouri F: Germline and somatic variants in ovarian carcinoma: A next-generation sequencing (NGS) analysis. Front Oncol. 12:10307862022. View Article : Google Scholar : PubMed/NCBI | |
|
Ghose A, Bolina A, Mahajan I, Raza SA, Clarke M, Pal A, Sanchez E, Rallis KS and Boussios S: Hereditary ovarian cancer: Towards a cost-effective prevention strategy. Int J Environ Res Public Health. 19:120572022. View Article : Google Scholar : PubMed/NCBI | |
|
McCluggage WG: Morphological subtypes of ovarian carcinoma: A review with emphasis on new developments and pathogenesis. Pathology. 43:420–432. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Andrews L and Mutch DG: Hereditary ovarian cancer and risk reduction. Best Pract Res Clin Obstet Gynaecol. 41:31–48. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lynch HT and Lynch JF: Hereditary nonpolyposis colorectal cancer. Semin Surg Oncol. 18:305–313. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Wu H, Shang X, Shi Y, Yang Z, Zhao J, Yang M, Li Y and Xu S: Genetic variants of lncRNA HOTAIR and risk of epithelial ovarian cancer among Chinese women. Oncotarget. 7:41047–41052. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bronder D, Tighe A, Wangsa D, Zong D, Meyer TJ, Wardenaar R, Minshall P, Hirsch D, Heselmeyer-Haddad K, Nelson L, et al: TP53 loss initiates chromosomal instability in fallopian tube epithelial cells. Dis Model Mech. 14:dmm0490012021. View Article : Google Scholar : PubMed/NCBI | |
|
Goff BA, Mandel L, Muntz HG and Melancon CH: Ovarian carcinoma diagnosis. Cancer. 89:2068–2075. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Zeimet AG, Fiegl H, Goebel G, Kopp F, Allasia C, Reimer D, Steppan I, Mueller-Holzner E, Ehrlich M and Marth C: DNA ploidy, nuclear size, proliferation index and DNA-hypomethylation in ovarian cancer. Gynecol Oncol. 121:24–31. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Widschwendter M, Jiang G, Woods C, Müller HM, Fiegl H, Goebel G, Marth C, Müller-Holzner E, Zeimet AG, Laird PW and Ehrlich M: DNA hypomethylation and ovarian cancer biology. Cancer Res. 64:4472–4480. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Feng W, Marquez RT, Lu Z, Liu J, Lu KH, Issa JP, Fishman DM, Yu Y and Bast RC Jr: Imprinted tumor suppressor genesARHI andPEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer. 112:1489–1502. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Link PA, Zhang W, Odunsi K and Karpf AR: BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer. Cancer Immun. 13:62013.PubMed/NCBI | |
|
Wang YQ, Yan Q, Zhang JR, Li SD, Yang YX and Wan XP: Epigenetic inactivation of BRCA1 through promoter hypermethylation in ovarian cancer progression. J Obstet Gynaecol Res. 39:549–554. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Abou-Zeid AA, Azzam AZ and Kamel NA: Methylation status of the gene promoter of cyclin-dependent kinase inhibitor 2A (CDKN2A) in ovarian cancer. Scand J Clin Lab Invest. 71:542–547. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Bhagat R, Kumar SS, Vaderhobli S, Premalata CS, Pallavi VR, Ramesh G and Krishnamoorthy L: Epigenetic alteration of p16 and retinoic acid receptor beta genes in the development of epithelial ovarian carcinoma. Tumour Biol. 35:9069–9078. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yang G, Zhang H, Liu Y, Zhou J, He W, Quick CM, Xie D, Smoller BR and Fan CY: Epigenetic and immunohistochemical characterization of the Clusterin gene in ovarian tumors. Arch Gynecol Obstet. 287:989–995. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Barger CJ, Link PA, Mhawech-Fauceglia P, Miller A, Akers SN, Odunsi K and Karpf AR: DNA hypomethylation-mediated activation of Cancer/Testis Antigen 45 (CT45) genes is associated with disease progression and reduced survival in epithelial ovarian cancer. Epigenetics. 10:736–748. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang B, Yu L, Luo X, Huang L, Li QS, Shao XS, Liu Y, Fan Y and Yang GZ: Detection of OPCML methylation, a possible epigenetic marker, from free serum circulating DNA to improve the diagnosis of early-stage ovarian epithelial cancer. Oncol Lett. 14:217–223. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kaur M, Singh A, Singh K, Gupta S and Sachan M: Development of a multiplex MethyLight assay for the detection of DAPK1 and SOX1 methylation in epithelial ovarian cancer in a north Indian population. Genes Genet Syst. 91:175–181. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Rattanapan Y, Korkiatsakul V, Kongruang A, Chareonsirisuthigul T, Rerkamnuaychoke B, Wongkularb A and Wilailak S: EGFL7 and RASSF1 promoter hypermethylation in epithelial ovarian cancer. Cancer Genet. 224–225. 37–40. 2018.PubMed/NCBI | |
|
da Conceição Braga C, Silva LM, Piedade JB, Traiman P and da Silva Filho AL: Epigenetic and expression analysis of TRAIL-R2 and BCL2: On the TRAIL to knowledge of apoptosis in ovarian tumors. Arch Gynecol Obstet. 289:1061–1069. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bonito NA, Borley J, Wilhelm-Benartzi CS, Ghaem-Maghami S and Brown R: Epigenetic regulation of the homeobox gene MSX1 associates with platinum-resistant disease in high-grade serous epithelial ovarian cancer. Clin Cancer Res. 22:3097–3104. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kardum V, Karin V, Glibo M, Skrtic A, Martic TN, Ibisevic N, Skenderi F, Vranic S and Serman L: Methylation-associated silencing of SFRP1 gene in high-grade serous ovarian carcinomas. Ann Diagn Pathol. 31:45–49. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Suzuki F, Akahira J, Miura I, Suzuki T, Ito K, Hayashi S, Sasano H and Yaegashi N: Loss of estrogen receptor beta isoform expression and its correlation with aberrant DNA methylation of the 5′-untranslated region in human epithelial ovarian carcinoma. Cancer Sci. 99:2365–2372. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Baranova I, Kovarikova H, Laco J, Dvorak O, Sedlakova I, Palicka V and Chmelarova M: Aberrant methylation of PCDH17 gene in high-grade serous ovarian carcinoma. Cancer Biomark. 23:125–133. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ding JJ, Wang G, Shi WX, Zhou HH and Zhao EF: Promoter hypermethylation of FANCF and susceptibility and prognosis of epithelial ovarian cancer. Reprod Sci. 23:24–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gozzi G, Chelbi ST, Manni P, Alberti L, Fonda S, Saponaro S, Fabbiani L, Rivasi F, Benhattar J and Losi L: Promoter methylation and downregulated expression of the TBX15 gene in ovarian carcinoma. Oncol Lett. 12:2811–2819. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Choi YL, Kang SY, Shin YK, Choi JS, Kim SH, Lee SJ, Bae DS and Ahn G: Aberrant hypermethylation of RASSF1A promoter in ovarian borderline tumors and carcinomas. Virchows Archiv. 448:331–336. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Häfner N, Steinbach D, Jansen L, Diebolder H, Dürst M and Runnebaum IB: RUNX3 and CAMK2N1 hypermethylation as prognostic marker for epithelial ovarian cancer. Int J Cancer. 138:217–228. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jin P, Song Y and Yu G: The role of abnormal methylation of Wnt5a gene promoter regions in human epithelial ovarian cancer: A clinical and experimental study. Anal Cell Pathol (Amst). 2018:65670812018.PubMed/NCBI | |
|
Khodadadi E, Fahmideh L, Khodadadi E, Dao S, Yousefi M, Taghizadeh S, Asgharzadeh M, Yousefi B and Kafil HS: Current advances in DNA methylation analysis methods. Biomed Res Int. 2021:88275162021. View Article : Google Scholar : PubMed/NCBI | |
|
Gattuso G, Lavoro A, Caltabiano R, Madonna G, Capone M, Ascierto PA, Falzone L, Libra M and Candido S: Methylation-sensitive restriction enzyme-droplet digital PCR assay for the one-step highly sensitive analysis of DNA methylation hotspots. Int J Mol Med. 53:422024. View Article : Google Scholar : PubMed/NCBI | |
|
Falzone L, Salemi R, Travali S, Scalisi A, McCubrey JA, Candido S and Libra M: MMP-9 overexpression is associated with intragenic hypermethylation of MMP9 gene in melanoma. Aging (Albany NY). 8:933–944. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Singer M, Kosti I, Pachter L and Mandel-Gutfreund Y: A diverse epigenetic landscape at human exons with implication for expression. Nucleic Acids Res. 43:3498–3508. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Davidson B, Tropé CG and Reich R: The clinical and diagnostic role of microRNAs in ovarian carcinoma. Gynecol Oncol. 133:640–646. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sheng X and Li J, Yang L, Chen Z, Zhao Q, Tan L, Zhou Y and Li J: Promoter hypermethylation influences the suppressive role of maternally expressed 3, a long non-coding RNA, in the development of epithelial ovarian cancer. Oncol Rep. 32:277–285. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Loginov VI, Pronina IV, Burdennyy AM, Filippova EA, Kazubskaya TP, Kushlinsky DN, Utkin DO, Khodyrev DS, Kushlinskii NE, Dmitriev AA and Braga EA: Novel miRNA genes deregulated by aberrant methylation in ovarian carcinoma are involved in metastasis. Gene. 662:28–36. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Filippov-Levy N, Cohen-Schussheim H, Tropé CG, Hetland Falkenthal TE, Smith Y, Davidson B and Reich R: Expression and clinical role of long non-coding RNA in high-grade serous carcinoma. Gynecol Oncol. 148:559–566. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Dai C, Jia G, Xu S, Fu Z, Xu J, Li Q, Ruan H and Xu P: Microarray analysis reveals differentially expressed lncRNAs in benign epithelial ovarian cysts and normal ovaries. Oncol Rep. 38:799–808. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lu YM, Wang Y, Liu SQ, Zhou MY and Guo YR: Profile and validation of dysregulated long non-coding RNAs and mRNAs in ovarian cancer. Oncol Rep. 40:2964–2976. 2018.PubMed/NCBI | |
|
Wang H, Fu Z, Dai C, Cao J, Liu X, Xu J, Lv M, Gu Y, Zhang J, Hua X, et al: LncRNAs expression profiling in normal ovary, benign ovarian cyst and malignant epithelial ovarian cancer. Sci Rep. 6:389832016. View Article : Google Scholar : PubMed/NCBI | |
|
Boyd C and McCluggage WG: Low-grade ovarian serous neoplasms (low-grade serous carcinoma and serous borderline tumor) associated with high-grade serous carcinoma or undifferentiated carcinoma: Report of a series of cases of an unusual phenomenon. Am J Surg Pathol. 36:368–375. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Pisanic TR II, Cope LM, Lin SF, Yen TT, Athamanolap P, Asaka R, Nakayama K, Fader AN, Wang TH, Shih IM and Wang TL: Methylomic analysis of ovarian cancers identifies tumor-specific alterations readily detectable in early precursor lesions. Clin Cancer Res. 24:6536–6547. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Klinkebiel D, Zhang W, Akers SN, Odunsi K and Karpf AR: DNA Methylome analyses implicate fallopian tube epithelia as the origin for high-grade serous ovarian cancer. Mol Cancer Res. 14:787–794. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Givel AM, Kieffer Y, Scholer-Dahirel A, Sirven P, Cardon M, Pelon F, Magagna I, Gentric G, Costa A, Bonneau C, Mieulet V, et al: miR200-regulated CXCL12β promotes fibroblast heterogeneity and immunosuppression in ovarian cancers. Nat Commun. 9:10562018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Qiu C, Lu N, Liu Z, Jin C, Sun C, Bu H, Yu H, Dongol S and Kong B: FOXD1 is targeted by miR-30a-5p and miR-200a-5p and suppresses the proliferation of human ovarian carcinoma cells by promoting p21 expression in a p53-independent manner. Int J Oncol. 52:2130–2142. 2018.PubMed/NCBI | |
|
Ma H, Tian T, Liang S, Liu X, Shen H, Xia M, Liu X, Zhang W, Wang L, Chen S and Yu L: Estrogen receptor-mediated miR-486-5p regulation of OLFM4 expression in ovarian cancer. Oncotarget. 7:10594–1605. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nymoen DA, Slipicevic A, Holth A, Emilsen E, Hetland Falkenthal TE, Tropé CG, Reich R, Flørenes VA and Davidson B: MiR-29a is a candidate biomarker of better survival in metastatic high-grade serous carcinoma. Hum Pathol. 54:74–81. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Arts FA, Keogh L, Smyth P, O'Toole S, Ta R, Gleeson N, O'Leary JJ, Flavin R and Sheils O: miR-223 potentially targets SWI/SNF complex protein SMARCD1 in atypical proliferative serous tumor and high-grade ovarian serous carcinoma. Hum Pathol. 70:98–104. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chaluvally-Raghavan P, Jeong KJ, Pradeep S, Silva AM, Yu S, Liu W, Moss T, Rodriguez-Aguayo C, Zhang D, Ram P, et al: Direct upregulation of STAT3 by MicroRNA-551b-3p deregulates growth and metastasis of ovarian cancer. Cell Rep. 15:1493–1504. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao H, Liu S, Wang G, Wu X, Ding Y, Guo G, Jiang J and Cui S: Expression of miR-136 is associated with the primary cisplatin resistance of human epithelial ovarian cancer. Oncol Rep. 33:591–598. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kuznetsov VA, Tang Z and Ivshina AV: Identification of common oncogenic and early developmental pathways in the ovarian carcinomas controlling by distinct prognostically significant microRNA subsets. BMC Genomics. 18 (Suppl 6):6922017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Guo G, Wang G, Zhao J, Wang B, Yu X and Ding Y: Profile of differentially expressed miRNAs in high-grade serous carcinoma and clear cell ovarian carcinoma, and the expression of miR-510 in ovarian carcinoma. Mol Med Rep. 12:8021–8031. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yanaihara N, Noguchi Y, Saito M, Takenaka M, Takakura S, Yamada K and Okamoto A: MicroRNA gene expression signature driven by miR-9 overexpression in ovarian clear cell carcinoma. PLoS One. 11:e01625842016. View Article : Google Scholar : PubMed/NCBI | |
|
Furlan D, Carnevali I, Marcomini B, Cerutti R, Dainese E, Capella C and Riva C: The high frequency of de novo promoter methylation in synchronous primary endometrial and ovarian carcinomas. Clin Cancer Res. 12:3329–3336. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Niskakoski A, Pasanen A, Porkka N, Eldfors S, Lassus H, Renkonen-Sinisalo L, Kaur S, Mecklin JP, Bützow R and Peltomäki P: Converging endometrial and ovarian tumorigenesis in Lynch syndrome: Shared origin of synchronous carcinomas. Gynecol Oncol. 150:92–98. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kolbe DL, DeLoia JA, Porter-Gill P, Strange M, Petrykowska HM, Guirguis A, Krivak TC, Brody LC and Elnitski L: Differential analysis of ovarian and endometrial cancers identifies a methylator phenotype. PLoS One. 7:e329412012. View Article : Google Scholar : PubMed/NCBI | |
|
Guo C, Ren F, Wang D, Li Y, Liu K, Liu S and Chen P: RUNX3 is inactivated by promoter hypermethylation in malignant transformation of ovarian endometriosis. Oncol Rep. 32:2580–2588. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liew PL, Huang RL, Weng YC, Fang CL, Hui-Ming Huang T and Lai HC: Distinct methylation profile of mucinous ovarian carcinoma reveals susceptibility to proteasome inhibitors: Methylation profile of MuOC and PSMB8. Int J Cancer. 143:355–367. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Agostini A, Brunetti M, Davidson B, Tropé CG, Eriksson AGZ, Heim S, Panagopoulos I and Micci F: The microRNA miR-192/215 family is upregulated in mucinous ovarian carcinomas. Sci Rep. 8:110692018. View Article : Google Scholar : PubMed/NCBI | |
|
Vang R, Shih IeM and Kurman RJ: Ovarian low-grade and high-grade serous carcinoma: Pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv Anat Pathol. 16:267–282. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Bowtell DD: The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer. 10:803–808. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
O'Shea AS: Clinical staging of ovarian cancer. Methods Mol Biol. 2424:3–10. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Richards EJ, Permuth-Wey J, Li Y, Chen YA, Coppola D, Reid BM, Lin HY, Teer JK, Berchuck A, Birrer MJ, et al: A functional variant in HOXA11-AS, a novel long non-coding RNA, inhibits the oncogenic phenotype of epithelial ovarian cancer. Oncotarget. 6:34745–34757. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Wu D, Deng S, Han R, Liu T, Li J and Xu Y: Integrated analysis reveals that long non-coding RNA TUBA4B can be used as a prognostic biomarker in various cancers. Cell Physiol Biochem. 49:530–544. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Meryet-Figuière M, Lambert B, Gauduchon P, Vigneron N, Brotin E, Poulain L and Denoyelle C: An overview of long non-coding RNAs in ovarian cancers. Oncotarget. 7:44719–44734. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong Y, Gao D, He S, Shuai C and Peng S: Dysregulated expression of long noncoding RNAs in ovarian cancer. Int J Gynecol Cancer. 26:1564–1570. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Y, Lu Y and Lu B: MicroRNA and Long Non-Coding RNA in ovarian carcinoma: Translational insights and potential clinical applications. Cancer Invest. 34:465–476. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lin X, Qiu J and Hua K: Long non-coding RNAs as emerging regulators of epithelial to mesenchymal transition in gynecologic cancers. Biosci Trends. 12:342–353. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Micheel J, Safrastyan A and Wollny D: Advances in non-coding RNA sequencing. Noncoding RNA. 7:702021.PubMed/NCBI | |
|
Zhang N, Hu G, Myers TG and Williamson PR: Protocols for the analysis of microRNA expression, biogenesis, and function in immune cells. Curr Protoc Immunol. 126:e782019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Leng T, Zhang Q, Zhao Q, Nie X and Yang L: Sanguinarine inhibits epithelial ovarian cancer development via regulating long non-coding RNA CASC2-EIF4A3 axis and/or inhibiting NF-κB signaling or PI3K/AKT/mTOR pathway. Biomed Pharmacother. 102:302–308. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu JJ, Lin YY, Ye LC, Ding JX, Feng WW, Jin HY, Zhang Y, Li Q and Hua KQ: Overexpression of long non-coding RNA HOTAIR predicts poor patient prognosis and promotes tumor metastasis in epithelial ovarian cancer. Gynecol Oncol. 134:121–128. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Xi J, Feng J and Zeng S: Long noncoding RNA lncBRM facilitates the proliferation, migration and invasion of ovarian cancer cells via upregulation of Sox4. Am J Cancer Res. 7:2180–2189. 2017.PubMed/NCBI | |
|
Zhang Y, Dun Y, Zhou S and Huang XH: LncRNA HOXD-AS1 promotes epithelial ovarian cancer cells proliferation and invasion by targeting miR-133a-3p and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother. 96:1216–1221. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wang Y, Yao D and Cui D: LncSOX4 serves an oncogenic role in the tumorigenesis of epithelial ovarian cancer by promoting cell proliferation and inhibiting apoptosis. Mol Med Rep. 17:8282–8288. 2018.PubMed/NCBI | |
|
Yan H, Li H, Li P, Li X, Lin J, Zhu L, Silva MA, Wang X, Wang P and Zhang Z: Long noncoding RNA MLK7-AS1 promotes ovarian cancer cells progression by modulating miR-375/YAP1 axis. J Exp Clin Cancer Res. 37:2372018. View Article : Google Scholar : PubMed/NCBI | |
|
Li T, Chen Y, Zhang J and Liu S: LncRNA TUG1 promotes cells proliferation and inhibits cells apoptosis through regulating AURKA in epithelial ovarian cancer cells. Medicine (Baltimore). 97:e121312018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YS, Ma LN, Sun JX, Liu N and Wang H: Long non-coding CPS1-IT1 is a positive prognostic factor and inhibits epithelial ovarian cancer tumorigenesis. Eur Rev Med Pharmacol Sci. 21:3169–3175. 2017.PubMed/NCBI | |
|
Zhu FF, Zheng FY, Wang HO, Zheng JJ and Zhang Q: Downregulation of lncRNA TUBA4B is associated with poor prognosis for epithelial ovarian cancer. Pathol Oncol Res. 24:419–425. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ying X, Wei K, Lin Z, Cui Y, Ding J, Chen Y and Xu B: MicroRNA-125b suppresses ovarian cancer progression via suppression of the epithelial-mesenchymal transition pathway by targeting the SET protein. Cell Physiol Biochem. 39:501–510. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu T, Gao W, Chen X, Zhang Y, Wu M, Zhang P and Wang S: A pilot study of circulating MicroRNA-125b as a diagnostic and prognostic biomarker for epithelial ovarian cancer. Int J Gynecol Cancer. 27:3–10. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Teng Y, Zhang Y, Qu K, Yang X, Fu J, Chen W and Li X: MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3. Oncotarget. 6:40799–40814. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Q, Lu K, Dai S, Hu Y and Fan W: Clinicopathological and prognostic implications of the miR-200 family in patients with epithelial ovarian cancer. Int J Clin Exp Pathol. 7:2392–2401. 2014.PubMed/NCBI | |
|
Kapetanakis NI, Uzan C, Jimenez-Pailhes AS, Gouy S, Bentivegna E, Morice P, Caron O, Gourzones-Dmitriev C, Le Teuff G and Busson P: Plasma miR-200b in ovarian carcinoma patients: Distinct pattern of pre/post-treatment variation compared to CA-125 and potential for prediction of progression-free survival. Oncotarget. 6:36815–36824. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Meng X, Müller V, Milde-Langosch K, Trillsch F, Pantel K and Schwarzenbach H: Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget. 7:16923–16935. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Du Z and Sha X: Demethoxycurcumin inhibited human epithelia ovarian cancer cells' growth via up-regulating miR-551a. Tumour Biol. 39:10104283176943022017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Chen X, Xiu YL, Sun KX and Zhao Y: MicroRNA-490-3P targets CDK1 and inhibits ovarian epithelial carcinoma tumorigenesis and progression. Cancer Lett. 362:122–130. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shuang T, Wang M, Shi C, Zhou Y and Wang D: Down-regulated expression of miR-134 contributes to paclitaxel resistance in human ovarian cancer cells. FEBS Lett. 589:3154–3164. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zou YT, Gao JY, Wang HL, Wang Y, Wang H and Li PL: Downregulation of microRNA-630 inhibits cell proliferation and invasion and enhances chemosensitivity in human ovarian carcinoma. Genet Mol Res. 14:8766–8777. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H and Li W: Dysregulation of micro-143-3p and BALBP1 contributes to the pathogenesis of the development of ovarian carcinoma. Oncol Rep. 36:3605–3610. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Zeng Q, Ban Z, Cao J, Chu T, Lei D, Liu C, Guo W and Zeng X: Effects of let-7c on the proliferation of ovarian carcinoma cells by targeted regulation of CDC25a gene expression. Oncol Lett. 16:5543–5550. 2018.PubMed/NCBI | |
|
Liu MX, Siu MK, Liu SS, Yam JW, Ngan HY and Chan DW: Epigenetic silencing of microRNA-199b-5p is associated with acquired chemoresistance via activation of JAG1-Notch1 signaling in ovarian cancer. Oncotarget. 5:944–958. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kobayashi M, Sawada K, Nakamura K, Yoshimura A, Miyamoto M, Shimizu A, Ishida K, Nakatsuka E, Kodama M, Hashimoto K, et al: Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res. 11:812018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao H, Bi T, Qu Z, Jiang J, Cui S and Wang Y: Expression of miR-224-5p is associated with the original cisplatin resistance of ovarian papillary serous carcinoma. Oncol Rep. 32:1003–1012. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Chen Q, Liu Q and Gao F: Human epididymis protein 4 expression positively correlated with miR-21 and served as a prognostic indicator in ovarian cancer. Tumour Biol. 37:8359–8365. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Huang K, You Y, Fu X, Hu L, Song L and Meng Y: Hypoxia-induced miR-210 in epithelial ovarian cancer enhances cancer cell viability via promoting proliferation and inhibiting apoptosis. Int J Oncol. 44:2111–2120. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Shen H, Yin X, Long L, Chen X, Feng F, Liu Y, Zhao P, Xu Y, Li M, et al: IL-6R/STAT3/miR-204 feedback loop contributes to cisplatin resistance of epithelial ovarian cancer cells. Oncotarget. 8:39154–39166. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fan Y, Fan J, Huang L, Ye M, Huang Z, Wang Y, Li Q and Huang J: Increased expression of microRNA-196a predicts poor prognosis in human ovarian carcinoma. Int J Clin Exp Pathol. 8:4132–4137. 2015.PubMed/NCBI | |
|
Koukourakis MI, Kontomanolis E, Sotiropoulou M, Mitrakas A, Dafa E, Pouliliou S, Sivridis E and Giatromanolaki A: Increased soluble PD-L1 levels in the plasma of patients with epithelial ovarian cancer correlate with plasma levels of miR34a and miR200. Anticancer Res. 38:5739–5745. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Dou Y and Sheng M: Inhibition of microRNA-383 has tumor suppressive effect in human epithelial ovarian cancer through the action on caspase-2 gene. Biomed Pharmacother. 83:1286–1294. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Dai F, Zhang Y and Chen Y: Involvement of miR-29b signaling in the sensitivity to chemotherapy in patients with ovarian carcinoma. Hum Pathol. 45:1285–1293. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao M, Cai J, Cai L, Jia J, Xie L, Zhu Y, Huang B, Jin D and Wang Z: Let-7e sensitizes epithelial ovarian cancer to cisplatin through repressing DNA double strand break repair. J Ovarian Res. 10:242017. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Pan Q, Wan X, Mao Y, Lu W, Xie X and Cheng X: Methylation-associated Has-miR-9 deregulation in paclitaxel-resistant epithelial ovarian carcinoma. BMC Cancer. 15:5092015. View Article : Google Scholar : PubMed/NCBI | |
|
Paudel D, Zhou W, Ouyang Y, Dong S, Huang Q, Giri R, Wang J and Tong X: MicroRNA-130b functions as a tumor suppressor by regulating RUNX3 in epithelial ovarian cancer. Gene. 586:48–55. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Duan S, Dong X, Hai J, Jiang J, Wang W, Yang J, Zhang W and Chen C: MicroRNA-135a-3p is downregulated and serves as a tumour suppressor in ovarian cancer by targeting CCR2. Biomed Pharmacother. 107:712–720. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Dong C, Law PT, Chan MT, Su Z, Wang S, Wu WK and Xu H: MicroRNA-145 targets TRIM2 and exerts tumor-suppressing functions in epithelial ovarian cancer. Gynecol Oncol. 139:513–519. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Qin CZ, Lou XY, Lv QL, Cheng L, Wu NY, Hu L and Zhou HH: MicroRNA-184 acts as a potential diagnostic and prognostic marker in epithelial ovarian cancer and regualtes cell proliferation, apoptosis and inflammation. Pharmazie. 70:668–673. 2015.PubMed/NCBI | |
|
Liang T, Li L, Cheng Y, Ren C and Zhang G: MicroRNA-194 promotes the growth, migration, and invasion of ovarian carcinoma cells by targeting protein tyrosine phosphatase nonreceptor type 12. Onco Targets Ther. 9:4307–4315. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wei C, Zhang X, He S, Liu B, Han H and Sun X: MicroRNA-219-5p inhibits the proliferation, migration, and invasion of epithelial ovarian cancer cells by targeting the Twist/Wnt/β-catenin signaling pathway. Gene. 637:25–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fu X, Li Y, Alvero A, Li J, Wu Q, Xiao Q, Peng Y, Hu Y, Li X, Yan W, et al: MicroRNA-222-3p/GNAI2/AKT axis inhibits epithelial ovarian cancer cell growth and associates with good overall survival. Oncotarget. 7:80633–80654. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Ruan Y, Jiang H and Xu C: MicroRNA-424 inhibits cell migration, invasion, and epithelial mesenchymal transition by downregulating doublecortin-like kinase 1 in ovarian clear cell carcinoma. Int J Biochem Cell Biol. 85:66–74. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Liu L, Sun Y, Xiang J, Zhou D, Wang L, Xu H, Yang X, Du N, Zhang M, et al: MicroRNA-520g promotes epithelial ovarian cancer progression and chemoresistance via DAPK2 repression. Oncotarget. 7:26516–26534. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Li Z, Gai F and Wang Y: MicroRNA-137 suppresses tumor growth in epithelial ovarian cancer in vitro and in vivo. Mol Med Rep. 12:3107–3114. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Jin S and Wang R: MicroRNA-139 suppressed tumor cell proliferation, migration and invasion by directly targeting HDGF in epithelial ovarian cancer. Mol Med Rep. 16:3379–3386. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xu L, Li H, Su L, Lu Q and Liu Z: MicroRNA-455 inhibits cell proliferation and invasion of epithelial ovarian cancer by directly targeting Notch1. Mol Med Rep. 16:9777–9785. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yan J, Jiang J, Meng XN, Xiu YL and Zong ZH: MiR-23b targets cyclin G1 and suppresses ovarian cancer tumorigenesis and progression. J Exp Clin Cancer Res. 35:312016. View Article : Google Scholar : PubMed/NCBI | |
|
Lin J, Zhang L, Huang H, Huang Y, Huang L, Wang J, Huang S, He L, Zhou Y, Jia W, et al: MiR-26b/KPNA2 axis inhibits epithelial ovarian carcinoma proliferation and metastasis through downregulating OCT4. Oncotarget. 6:23793–23806. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Jiang N, Shi H, Zhao S, Yao S and Shen H: miR-28-5p promotes the development and progression of ovarian cancer through inhibition of N4BP1. Int J Oncol. 50:1383–1391. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhang X, Tang W, Lin Z, Xu L, Dong R, Li Y, Li J, Zhang Z, Li X, et al: miR-130a upregulates mTOR pathway by targeting TSC1 and is transactivated by NF-κB in high-grade serous ovarian carcinoma. Cell Death Differ. 24:2089–2100. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, He J, Xu H, Xu L and Li N: MiR-143 targets CTGF and exerts tumor-suppressing functions in epithelial ovarian cancer. Am J Transl Res. 8:2716–2726. 2016.PubMed/NCBI | |
|
Dong M, Yang P and Hua F: miR-191 modulates malignant transformation of endometriosis through regulating TIMP3. Med Sci Monit. 21:915–920. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Niu K, Shen W, Zhang Y, Zhao Y and Lu Y: MiR-205 promotes motility of ovarian cancer cells via targeting ZEB1. Gene. 574:330–336. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dai C, Xie Y, Zhuang X and Yuan Z: MiR-206 inhibits epithelial ovarian cancer cells growth and invasion via blocking c-Met/AKT/mTOR signaling pathway. Biomed Pharmacother. 104:763–770. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xia B, Yang S, Liu T and Lou G: miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6. Mol Cancer. 14:572015. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Q, Ren X, Zhang Y, Fu X, Li Y, Peng Y, Xiao Q, Li T, Ouyang C, Hu Y, et al: MiR-221-3p targets ARF4 and inhibits the proliferation and migration of epithelial ovarian cancer cells. Biochem Biophys Res Commun. 497:1162–1170. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cao L, Wan Q, Li F and Tang C: MiR-363 inhibits cisplatin chemoresistance of epithelial ovarian cancer by regulating snail-induced epithelial-mesenchymal transition. BMB Rep. 51:456–461. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xia B, Li H, Yang S, Liu T and Lou G: MiR-381 inhibits epithelial ovarian cancer malignancy via YY1 suppression. Tumour Biol. 37:9157–9167. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan J, Wang K and Xi M: MiR-494 inhibits epithelial ovarian cancer growth by targeting c-Myc. Med Sci Monit. 22:617–624. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li N, Zhao X, Wang L, Zhang S, Cui M and He J: miR-494 suppresses tumor growth of epithelial ovarian carcinoma by targeting IGF1R. Tumour Biol. 37:7767–7776. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou QH, Zhao YM, JIA LL and Zhang Y: Mir-595 is a significant indicator of poor patient prognosis in epithelial ovarian cancer. Eur Rev Med Pharmacol Sci. 21:4278–4282. 2017.PubMed/NCBI | |
|
Zhang S, Zhang JY, Lu LJ, Wang CH and Wang LH: MiR-630 promotes epithelial ovarian cancer proliferation and invasion via targeting KLF6. Eur Rev Med Pharmacol Sci. 21:4542–4547. 217.PubMed/NCBI | |
|
Shi C and Zhang Z: miR-761 inhibits tumor progression by targeting MSI1 in ovarian carcinoma. Tumour Biol. 37:5437–5443. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Xie X, Huang Y, Chen L and Wang J: miR-221 regulates proliferation and apoptosis of ovarian cancer cells by targeting BMF. Oncol Lett. 16:6697–6704. 2018.PubMed/NCBI | |
|
Wen C, Liu X, Ma H, Zhang W and Li H: miR-338-3p suppresses tumor growth of ovarian epithelial carcinoma by targeting Runx2. Int J Oncol. 46:2277–2285. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Salem M, O'Brien JA, Bernaudo S, Shawer H, Ye G, Brkić J, Amleh A, Vanderhyden BC, Refky B, Yang BB, et al: miR-590-3p promotes ovarian cancer growth and metastasis via a Novel FOXA2-versican pathway. Cancer Res. 78:4175–4190. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Z, Zhao J, Wang X, Zhu X and Gong L: Overexpression of microRNA-497 suppresses cell proliferation and induces apoptosis through targeting paired box 2 in human ovarian cancer. Oncol Rep. 36:2101–2107. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lin M, Xia B, Qin L, Chen H and Lou G: S100A7 regulates ovarian cancer cell metastasis and chemoresistance through MAPK signaling and is targeted by miR-330-5p. DNA Cell Biol. 37:491–500. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen JL, Chen F, Zhang TT and Liu NF: Suppression of SIK1 by miR-141 in human ovarian cancer cell lines and tissues. Int J Mol Med. 37:1601–1610. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zuberi M, Khan I, Gandhi G, Ray PC and Saxena A: The conglomeration of diagnostic, prognostic and therapeutic potential of serum miR-199a and its association with clinicopathological features in epithelial ovarian cancer. Tumour Biol. 37:11259–11266. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Guan X, Zong ZH, Chen S, Sang XB, Wu DD, Wang LL, Liu Y and Zhao Y: The role of miR-372 in ovarian carcinoma cell proliferation. Gene. 624:14–20. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Li D and Zhang W: Tumor suppressor role of miR-217 in human epithelial ovarian cancer by targeting IGF1R. Oncol Rep. 35:1671–1679. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Liu J, Zang D, Wu S, Liu A, Zhu J, Wu G, Li J and Jiang L: Upregulation of miR-572 transcriptionally suppresses SOCS1 and p21 and contributes to human ovarian cancer progression. Oncotarget. 6:15180–15193. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Gong G, Tan H, Dai F, Zhu X, Chen Y, Wang J, Liu Y, Chen P, Wu X and Wen J: Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma. Oncol Rep. 33:2915–2923. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Li S, Dong C, Xie X and Zhang Y: Knockdown of long noncoding RNA NR_026689 inhibits proliferation and invasion and increases apoptosis in ovarian carcinoma HO-8910PM cells. Oncol Res. 25:259–265. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu L, Guo Q, Lu X, Zhao J, Shi J, Wang Z and Zhou X: CTD-2020K17.1, a novel long non-coding RNA, promotes migration, invasion, and proliferation of serous ovarian cancer cells in vitro. Med Sci Monit. 24:1329–1339. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu JJ, Zhang XD, Tang XY, Zheng TT, Zhang Y and Hua KQ: ElncRNA1, a long non-coding RNA that is transcriptionally induced by oestrogen, promotes epithelial ovarian cancer cell proliferation. Int J Oncol. 51:507–514. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Y, Meng H, Liu S, Hu J, Zhang Y, Jiao T, Liu Y, Ou J, Wang D, Yao L, et al: LncRNA-HOST2 regulates cell biological behaviors in epithelial ovarian cancer through a mechanism involving microRNA let-7b. Hum Mol Genet. 24:841–852. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Wang H, Song T, Zou Y, Jiang J, Fang L and Li P: HOTAIR is a potential target for the treatment of cisplatin-resistant ovarian cancer. Mol Med Rep. 12:2211–2216. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lu CW, Zhou DD, Xie T, Hao JL, Pant OP, Lu CB and Liu XF: HOXA11 antisense long noncoding RNA (HOXA11-AS): A promising lncRNA in human cancers. Cancer Med. 7:3792–3799. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Du W, Feng Z and Sun Q: LncRNA LINC00319 accelerates ovarian cancer progression through miR-423-5p/NACC1 pathway. Biochem Biophys Res Commun. 507:198–202. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shu C, Yan D, Mo Y, Gu J, Shah N and He J: Long noncoding RNA lncARSR promotes epithelial ovarian cancer cell proliferation and invasion by association with HuR and miR-200 family. Am J Cancer Res. 8:981–992. 2018.PubMed/NCBI | |
|
Chen S, Wu DD, Sang XB, Wang LL, Zong ZH, Sun KX, Liu BL and Zhao Y: The lncRNA HULC functions as an oncogene by targeting ATG7 and ITGB1 in epithelial ovarian carcinoma. Cell Death Dis. 8:e31182017. View Article : Google Scholar : PubMed/NCBI | |
|
Qnbo L, Guan W, Ren W, Zhang L, Zhang J and Xu G: MALAT1 affects ovarian cancer cell behavior and patient survival. Oncol Rep. 39:2644–2652. 2018.PubMed/NCBI | |
|
Lin Q, Guan W, Ren W, Zhang L, Zhang J and Xu G: MALAT1 affects ovarian cancer cell behavior and patient survival. Oncol Rep. 39:2644–2652. 2018.PubMed/NCBI | |
|
Yan C, Jiang Y, Wan Y, Zhang L, Liu J, Zhou S and Cheng W: Long noncoding RNA NBAT-1 suppresses tumorigenesis and predicts favorable prognosis in ovarian cancer. Onco Targets Ther. 10:1993–2002. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wang Y, Fu X and Lu Z: Long non-coding RNA NEAT1 promoted ovarian cancer cells' metastasis through regulation of miR-382-3p/ROCK1 axial. Cancer Sci. 109:2188–2198. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Wang LL, Sun KX, Liu Y, Guan X, Zong ZH and Zhao Y: LncRNA PCGEM1 induces ovarian carcinoma tumorigenesis and progression through RhoA pathway. Cell Physiol Biochem. 47:1578–1588. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Huang K, Geng J and Wang J: Long non-coding RNA RP11-552M11.4 promotes cells proliferation, migration and invasion by targeting BRCA2 in ovarian cancer. Cancer Sci. 109:1428–1446. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Liu C, Lu Z, Chen L, Wang J, Li Y and Ma H: Upregulation of the long non-coding RNA SPRY4-IT1 indicates a poor prognosis and promotes tumorigenesis in ovarian cancer. Biomed Pharmacother. 88:529–534. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li TH, Zhang JJ, Liu SX and Chen Y: Long non-coding RNA taurine-upregulated gene 1 predicts unfavorable prognosis, promotes cells proliferation, and inhibits cells apoptosis in epithelial ovarian cancer. Medicine (Baltimore). 97:e05752018. View Article : Google Scholar : PubMed/NCBI | |
|
Hong HH, Hou LK, Pan X, Wu CY, Huang H, Li B and Nie W: Long non-coding RNA UCA1 is a predictive biomarker of cancer. Oncotarget. 7:44442–44447. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Cao X, Zhang L, Zhang X, Sheng H and Tao K: UCA1 overexpression predicts clinical outcome of patients with ovarian cancer receiving adjuvant chemotherapy. Cancer Chemother Pharmacol. 77:629–634. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu JJ, Wang Y, Liu YL, Zhang Y, Ding JX and Hua KQ: The long non-coding RNA ANRIL promotes proliferation and cell cycle progression and inhibits apoptosis and senescence in epithelial ovarian cancer. Oncotarget. 7:32478–32492. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Shi H, Ren F, Jia Y and Zhang R: Long non-coding RNA CCAT1 promotes metastasis and poor prognosis in epithelial ovarian cancer. Exp Cell Res. 359:185–194. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hua F, Li CH, Chen XG and Liu XP: Long Noncoding RNA CCAT2 knockdown suppresses tumorous progression by sponging miR-424 in epithelial ovarian cancer. Oncol Res. 26:241–247. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yim GW, Kim HJ, Kim LK, Kim SW, Kim S, Nam EJ and Kim YT: Long Non-coding RNA HOXA11 antisense promotes cell proliferation and invasion and predicts patient prognosis in serous ovarian cancer. Cancer Res Treat. 49:656–668. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Koutsaki M, Spandidos DA and Zaravinos A: Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: Prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett. 351:173–181. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sulaiman SA, Ab Mutalib NS and Jamal R: miR-200c regulation of metastases in ovarian cancer: Potential role in epithelial and mesenchymal transition. Front Pharmacol. 7:2712016. View Article : Google Scholar : PubMed/NCBI | |
|
Teng Y, Su X, Zhang X, Zhang Y, Li C, Niu W, Liu C and Qu K: miRNA-200a/c as potential biomarker in epithelial ovarian cancer (EOC): Evidence based on miRNA meta-signature and clinical investigations. Oncotarget. 7:81621–81633. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Muralidhar G and Barbolina M: The miR-200 Family: Versatile players in epithelial ovarian cancer. Int J Mol Sci. 16:16833–16847. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zuberi M, Khan I, Mir R, Gandhi G, Ray PC and Saxena A: Utility of serum miR-125b as a diagnostic and prognostic indicator and its alliance with a panel of tumor suppressor genes in epithelial ovarian cancer. PLoS One. 11:e01539022016. View Article : Google Scholar : PubMed/NCBI | |
|
Faul C, Gerszten K, Edwards R, Land S, D'Angelo G, Kelley J III and Price F: A phase I/II study of hypofractionated whole abdominal radiation therapy in patients with chemoresistant ovarian carcinoma: Karnofsky score determines treatment outcome. Int J Radiat Oncol Biol Phys. 47:749–754. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Iorio GC, Martini S, Arcadipane F, Ricardi U and Franco P: The role of radiotherapy in epithelial ovarian cancer: A literature overview. Med Oncol. 36:642019. View Article : Google Scholar : PubMed/NCBI | |
|
Sorbe B: Consolidation treatment of advanced ovarian carcinoma with radiotherapy after induction chemotherapy. Int J Gynecol Cancer. 13 (Suppl 2):S192–S195. 2003. View Article : Google Scholar | |
|
Pang L and Guo Z: Differences in characteristics and outcomes between large-cell neuroendocrine carcinoma of the ovary and high-grade serous ovarian cancer: A retrospective observational cohort study. Front Oncol. 12:8916992022. View Article : Google Scholar : PubMed/NCBI | |
|
Patel SC, Frandsen J, Bhatia S and Gaffney D: Impact on survival with adjuvant radiotherapy for clear cell, mucinous, and endometriod ovarian cancer: The SEER experience from 2004 to 2011. J Gynecol Oncol. 27:e452016. View Article : Google Scholar : PubMed/NCBI | |
|
Pestell KE, Medlow CJ, Titley JC, Kelland LR and Walton MI: Characterisation Of The P53 Status, Bcl-2 expression and radiation and platinum drug sensitivity of a panel of human ovarian cancer cell lines. Int J Cancer. 77:913–918. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Zielske SP: Epigenetic DNA methylation in radiation biology: On the field or on the sidelines? J Cell Biochem. 116:212–217. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY and Bapat SA: Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-Mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 27:2059–2068. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Liu WJ, Huang YX, Wang W, Zhang Y, Liu BJ, Qiu JG, Jiang BH and Liu LZ: NOX4 signaling mediates cancer development and therapeutic resistance through HER3 in ovarian cancer cells. Cells. 10:16472021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Jia Y, Jia ZH, Zhu Y and Jin YM: Silencing the expression of MTDH increases the radiation sensitivity of SKOV3 ovarian cancer cells and reduces their proliferation and metastasis. Int J Oncol. 53:2180–2190. 2018.PubMed/NCBI | |
|
Zhao Y, Liu S, Wen Y and Zhong L: Effect of MicroRNA-210 on the growth of ovarian cancer cells and the efficacy of radiotherapy. Gynecol Obstet Invest. 86:71–80. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xing Y, Cui D, Wang S, Wang P, Xing X and Li H: Oleuropein represses the radiation resistance of ovarian cancer by inhibiting hypoxia and microRNA-299-targetted heparanase expression. Food Funct. 8:2857–2864. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Marques C, Ferreira da Silva F, Sousa I and Nave M: Chemotherapy-free treatment of recurrent advanced ovarian cancer: Myth or reality? Int J Gynecol Cancer. 33:607–618. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Marchetti C, De Felice F, Romito A, Iacobelli V, Sassu CM, Corrado G, Ricci C, Scambia G and Fagotti A: Chemotherapy resistance in epithelial ovarian cancer: Mechanisms and emerging treatments. Semin Cancer Biol. 77:144–166. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Falzone L, Bordonaro R and Libra M: SnapShot: Cancer chemotherapy. Cell. 186:1816–1816.e1. 2023. View Article : Google Scholar | |
|
Raab M, Sanhaji M, Zhou S, Rödel F, El-Balat A, Becker S and Strebhardt K: Blocking mitotic exit of ovarian cancer cells by pharmaceutical inhibition of the anaphase-promoting complex reduces chromosomal instability. Neoplasia. 21:363–375. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Swanton C, Nicke B, Schuett M, Eklund AC, Ng C, Li Q, Hardcastle T, Lee A, Roy R, East P and Kschischo M: Chromosomal instability determines taxane response. Proc Natl Acad Sci USA. 106:8671–8676. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Pradhan M, Risberg BÅ, Tropé CG, van de Rijn M, Gilks CB and Lee CH: Gross genomic alterations and gene expression profiles of high-grade serous carcinoma of the ovary with and without BRCA1 inactivation. BMC Cancer. 10:4932010. View Article : Google Scholar : PubMed/NCBI | |
|
Tang Z, Yang J, Wang X, Zeng M, Wang J, Wang A, Zhao M, Guo L, Liu C, Li D and Chen J: Active DNA end processing in micronuclei of ovarian cancer cells. BMC Cancer. 18:4262018. View Article : Google Scholar : PubMed/NCBI | |
|
Morden CR, Farrell AC, Sliwowski M, Lichtensztejn Z, Altman AD, Nachtigal MW and McManus KJ: Chromosome instability is prevalent and dynamic in high-grade serous ovarian cancer patient samples. Gynecol Oncol. 161:769–778. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gorringe KL, Chin SF, Pharoah P, Staines JM, Oliveira C, Edwards PA and Caldas C: Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer. Carcinogenesis. 26:923–930. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bayani J, Paderova J, Murphy J, Rosen B, Zielenska M and Squire JA: Distinct patterns of structural and numerical chromosomal instability characterize sporadic ovarian cancer. Neoplasia. 10:1057–1065. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Birkbak NJ, Eklund AC, Li Q, McClelland SE, Endesfelder D, Tan P, Tan IB, Richardson AL, Szallasi Z and Swanton C: Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71:3447–3452. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hille S, Rein DT, Riffelmann M, Neumann R, Sartorius J, Pfützner A, Kurbacher CM, Schöndorf T and Breidenbach M: Anticancer drugs induce mdr1 gene expression in recurrent ovarian cancer. Anticancer Drugs. 17:1041–1044. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Wang M, Shi C, Shi F and Pei C: Long non-coding RNA Linc00312 modulates the sensitivity of ovarian cancer to cisplatin via the Bcl-2/Caspase-3 signaling pathway. Biosci Trends. 12:309–316. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cui Y, Qin L, Tian D, Wang T, Fan L, Zhang P and Wang Z: ZEB1 Promotes chemoresistance to cisplatin in ovarian cancer cells by suppressing SLC3A2. Chemotherapy. 63:262–271. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sen T, Sen N, Brait M, Begum S, Chatterjee A, Hoque MO, Ratovitski E and Sidransky D: Np63 confers tumor cell resistance to cisplatin through the AKT1 transcriptional regulation. Cancer Res. 71:1167–1176. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar S, Kumar A, Shah PP, Rai SN, Panguluri SK and Kakar SS: MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines. J Ovarian Res. 4:172011. View Article : Google Scholar : PubMed/NCBI | |
|
Leung AWY, Veinotte CJ, Melong N, Melong N, Oh MH, Chen K, Enfield KSS, Backstrom I, Warburton C, Yapp D, et al: In vivo validation of PAPSS1 (3′-phosphoadenosine 5′-phosphosulfate synthase 1) as a cisplatin-sensitizing therapeutic target. Clin Cancer Res. 23:6555–6566. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kritsch D, Hoffmann F, Steinbach D, Jansen L, Mary Photini S, Gajda M, Mosig AS, Sonnemann J, Peters S, Melnikova M, et al: Tribbles 2 mediates cisplatin sensitivity and DNA damage response in epithelial ovarian cancer. Int J Cancer. 141:1600–1614. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Nam EJ, Kim S, Lee TS, Kim HJ, Lee JY, Kim SW, Kim JH and Kim YT: Primary and recurrent ovarian high-grade serous carcinomas display similar microRNA expression patterns relative to those of normal ovarian tissue. Oncotarget. 7:70524–70534. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chong GO, Jeon HS, Han HS, Son JW, Lee YH, Hong DG, Lee YS and Cho Y: Differential MicroRNA expression profiles in primary and recurrent epithelial ovarian cancer. Anticancer Res. 7:2611–2617. 2015. | |
|
Chong GO, Jeon HS, Han HS, Son JW, Lee YH, Hong DG, Park HJ, Lee YS and Cho YL: Overexpression of microRNA-196b accelerates invasiveness of cancer cells in recurrent epithelial ovarian cancer through regulation of homeobox A9. Cancer Genomics Proteomics. 14:137–142. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Wang M, Wu J, Jie Z, Chang S and Shuang T: The clinicopathological significance of miR-1307 in chemotherapy resistant epithelial ovarian cancer. J Ovarian Res. 8:232015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Hu Y and Li L: NRP1 is targeted by miR-130a and miR-130b, and is associated with multidrug resistance in epithelial ovarian cancer based on integrated gene network analysis. Mol Med Rep. 13:188–196. 2016. View Article : Google Scholar : PubMed/NCBI |