|
1
|
International Human Genome Sequencing
Consortium, . Finishing the euchromatic sequence of the human
genome. Nature. 431:931–945. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Miescher F: On the chemical composition of
pus cells. Medicinisch-chemische Untersuchungen. 4:441–460.
1871.(In German).
|
|
3
|
ENCODE Project Consortium, . Moore JE,
Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, Adrian J, Kawli T,
Davis CA, Dobin A, et al: Expanded encyclopaedias of DNA elements
in the human and mouse genomes. Nature. 583:699–710. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Budakoti M, Panwar AS, Molpa D, Singh RK,
Büsselberg D, Mishra AP, Coutinho HDM and Nigam M: Micro-RNA: The
darkhorse of cancer. Cell Signal. 83:1099952021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen H, Xu Z and Liu D: Small non-coding
RNA and colorectal cancer. J Cell Mol Med. 23:3050–3057. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fanale D, Taverna S, Russo A and Bazan V:
Circular RNA in exosomes. Adv Exp Med Biol. 1087:109–117. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Li L, Wang Y, Zhang X, Huang Q, Diao Y,
Yin H and Liu H: Long non-coding RNA HOXD-AS1 in cancer. Clin Chim
Acta. 487:197–201. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Berindan-Neagoe I, Monroig P, Pasculli B
and Calin GA: MicroRNAome genome: A treasure for cancer diagnosis
and therapy. CA Cancer J Clin. 64:311–336. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhao H, Zhou Q and Li X: Protein bait
hypothesis: circRNA-Encoded proteins competitively inhibit cognate
functional isoforms. Trends Genet. 37:616–624. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wightman B, Ha I and Ruvkun G:
Posttranscriptional regulation of the heterochronic gene lin-14 by
lin-4 mediates temporal pattern formation in C. elegans. Cell.
75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Calin GA, Dumitru CD, Shimizu M, Bichi R,
Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al:
Frequent deletions and down-regulation of micro- RNA genes miR15
and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad
Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi
S, Xie H, Peng X, Yin W, Tao Y and Wang X: miRNA-based biomarkers,
therapies, and resistance in cancer. Int J Biol Sci. 16:2628–2647.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gao Q, Lei F, Zeng Q, Gao Z, Niu P, Junnan
Ning Li J and Zhang J: Functional passenger-Strand miRNAs in
exosomes derived from human colon cancer cells and their
heterogeneous paracrine effects. Int J Biol Sci. 16:1044–1058.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Su WZ and Ren LF: MiRNA-199 inhibits
malignant progression of lung cancer through mediating RGS17. Eur
Rev Med Pharmacol Sci. 23:3390–3400. 2019.PubMed/NCBI
|
|
15
|
Cheng XK, Lin WR, Jiang H, Su ZH, Li L and
Wang J: MicroRNA-129-5p inhibits invasiveness and metastasis of
lung cancer cells and tumor angiogenesis via targeting VEGF. Eur
Rev Med Pharmacol Sci. 23:2827–2837. 2019.PubMed/NCBI
|
|
16
|
Deng S, Zhang X, Qin Y, Chen W, Fan H,
Feng X, Wang J, Yan R, Zhao Y, Cheng Y, et al: miRNA-192 and −215
activate Wnt/β-catenin signaling pathway in gastric cancer via APC.
J Cell Physiol. 235:6218–6229. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Qiu S, Xie L, Lu C, Gu C, Xia Y, Lv J,
Xuan Z, Fang L, Yang J, Zhang L, et al: Gastric cancer-derived
exosomal miR-519a-3p promotes liver metastasis by inducing
intrahepatic M2-like macrophage-mediated angiogenesis. J Exp Clin
Cancer Res. 41:2962022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Malagobadan S, Ho CS and Nagoor NH:
MicroRNA-6744-5p promotes anoikis in breast cancer and directly
targets NAT1 enzyme. Cancer Biol Med. 17:101–111. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang X, Yang Y, Zhang W, Huang K, Xu L,
Shahid N, Pan Y, Xu C, Jiao X and Yang K: Downregulation of
MiR-1538 promotes proliferation and metastasis of colorectal cancer
by targeting DNMT3A. Biochem Biophys Res Commun. 609:119–126. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Xiao Z, Feng X, Zhou Y, Li P, Luo J, Zhang
W, Zhou J, Zhao J, Wang D, Wang Y, et al: Exosomal miR-10527-5p
inhibits migration, invasion, lymphangiogenesis and lymphatic
metastasis by affecting Wnt/β-catenin signaling via Rab10 in
esophageal squamous cell carcinoma. Int J Nanomedicine. 18:95–114.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Jia C, Zhang Y, Xie Y, Ren Y, Zhang H,
Zhou Y, Gao N, Ding S and Han S: miR-200a-3p plays tumor suppressor
roles in gastric cancer cells by targeting KLF12. Artif Cells
Nanomed Biotechnol. 47:3697–3703. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Pichler M, Ress AL, Winter E, Stiegelbauer
V, Karbiener M, Schwarzenbacher D, Scheideler M, Ivan C, Jahn SW,
Kiesslich T, et al: MiR-200a regulates epithelial to mesenchymal
transition-related gene expression and determines prognosis in
colorectal cancer patients. Br J Cancer. 110:1614–1621. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Su X, Lang C, Luan A and Zhao P: MiR-200a
promotes proliferation of cervical cancer cells by regulating
HIF-1α/VEGF signaling pathway. J BUON. 25:1935–1940.
2020.PubMed/NCBI
|
|
24
|
Matsui M and Corey DR: Non-coding RNAs as
drug targets. Nat Rev Drug Discov. 16:167–179. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Diener C, Keller A and Meese E: Emerging
concepts of miRNA therapeutics: From cells to clinic. Trends Genet.
38:613–626. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bouchie A: First microRNA mimic enters
clinic. Nat Biotechnol. 31:5772013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Beg MS, Brenner AJ, Sachdev J, Borad M,
Kang YK, Stoudemire J, Smith S, Bader AG, Kim S and Hong DS: Phase
I study of MRX34, a liposomal miR-34a mimic, administered twice
weekly in patients with advanced solid tumors. Invest New Drugs.
35:180–188. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hong DS, Kang YK, Borad M, Sachdev J,
Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1
study of MRX34, a liposomal miR-34a mimic, in patients with
advanced solid tumours. Br J Cancer. 122:1630–1637. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yeh YM, Chuang CM, Chao KC and Wang LH:
MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis
by targeting SOX4 and HIF-1α. Int J Cancer. 133:867–878. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yu C, Wang M, Li Z, Xiao J, Peng F, Guo X,
Deng Y, Jiang J and Sun C: MicroRNA-138-5p regulates pancreatic
cancer cell growth through targeting FOXC1. Cell Oncol (Dordr).
38:173–181. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhao L, Yu H, Yi S, Peng X, Su P, Xiao Z,
Liu R, Tang A, Li X, Liu F and Shen S: The tumor suppressor
miR-138-5p targets PD-L1 in colorectal cancer. Oncotarget.
7:45370–45384. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lee S, Kim J, Valdmanis PN and Kim HK:
Emerging roles of tRNA-derived small RNAs in cancer biology. Exp
Mol Med. 55:1293–1304. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu B, Cao J, Wang X, Guo C, Liu Y and
Wang T: Deciphering the tRNA-derived small RNAs: Origin,
development, and future. Cell Death Dis. 13:242021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xu D, Qiao D, Lei Y, Zhang C, Bu Y and
Zhang Y: Transfer RNA-derived small RNAs (tsRNAs): Versatile
regulators in cancer. Cancer Lett. 546:2158422022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhu L, Li J, Gong Y, Wu Q, Tan S, Sun D,
Xu X, Zuo Y, Zhao Y, Wei YQ, et al: Exosomal tRNA-derived small RNA
as a promising biomarker for cancer diagnosis. Mol Cancer.
18:742019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Du J, Huang T, Zheng Z, Fang S, Deng H and
Liu K: Biological function and clinical application prospect of
tsRNAs in digestive system biology and pathology. Cell Commun
Signal. 21:3022023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Burger K, Schlackow M and Gullerova M:
Tyrosine kinase c-Abl couples RNA polymerase II transcription to
DNA double-strand breaks. Nucleic Acids Res. 47:3467–3484. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi
J, Feng GH, Peng H, Zhang X, Zhang Y, et al: Sperm tsRNAs
contribute to intergenerational inheritance of an acquired
metabolic disorder. Science. 351:397–400. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Park J, Ahn SH, Shin MG, Kim HK and Chang
S: tRNA-derived small RNAs: Novel epigenetic regulators. Cancers
(Basel). 12:27732020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ying X, Hu W, Huang Y, Lv Y, Ji D, Chen C,
Yang B, Zhang C, Liang Y, Zhang H, et al: A Novel tsRNA, m7G-3′
tiRNA LysTTT, promotes bladder cancer malignancy via regulating
ANXA2 phosphorylation. Adv Sci (Weinh). 18:e24001152024. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Xiong Q, Zhang Y, Xu Y, Yang Y, Zhang Z,
Zhou Y, Zhang S, Zhou L, Wan X, Yang X, et al: tiRNA-Val-CAC-2
interacts with FUBP1 to promote pancreatic cancer metastasis by
activating c-MYC transcription. Oncogene. 43:1274–1287. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Xu W, Zheng J, Wang X, Zhou B, Chen H, Li
G and Yan F: tRF-Val-CAC-016 modulates the transduction of
CACNA1d-mediated MAPK signaling pathways to suppress the
proliferation of gastric carcinoma. Cell Commun Signal. 20:682022.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang Y, Gu X, Li Y, Li X, Huang Y and Ju
S: Transfer RNA-derived fragment tRF-23-Q99P9P9NDD promotes
progression of gastric cancer by targeting ACADSB. J
Zhejiang Univ Sci B. 25:438–450. 2024.(In English, Chinese).
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mo D, He F, Zheng J, Chen H, Tang L and
Yan F: tRNA-derived fragment tRF-17-79MP9PP attenuates cell
invasion and migration via THBS1/TGF-β1/Smad3 axis in breast
cancer. Front Oncol. 11:6560782021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tao EW, Wang HL, Cheng WY, Liu QQ, Chen YX
and Gao QY: A specific tRNA half, 5′tiRNA-His-GTG, responds to
hypoxia via the HIF1α/ANG axis and promotes colorectal cancer
progression by regulating LATS2. J Exp Clin Cancer Res. 40:672021.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yang W, Gao K, Qian Y, Huang Y, Xiang Q,
Chen C, Chen Q, Wang Y, Fang F, He Q, et al: A novel tRNA-derived
fragment AS-tDR-007333 promotes the malignancy of NSCLC via the
HSPB1/MED29 and ELK4/MED29 axes. J Hematol Oncol. 15:532022.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Czech B, Munafò M, Ciabrelli F, Eastwood
EL, Fabry MH, Kneuss E and Hannon GJ: piRNA-Guided genome defense:
From biogenesis to silencing. Annu Rev Genet. 52:131–157. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Liu Y, Dou M, Song X, Dong Y, Liu S, Liu
H, Tao J, Li W, Yin X and Xu W: The emerging role of the piRNA/piwi
complex in cancer. Mol Cancer. 18:1232019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Han R, Rao X, Zhou H and Lu L: Synergistic
immunoregulation: Harnessing CircRNAs and PiRNAs to amplify
PD-1/PD-L1 inhibition therapy. Int J Nanomedicine. 19:4803–4834.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Bastiaanssen C, Ugarte PB, Kim K,
Finocchio G, Feng Y, Anzelon TA, Köstlbacher S, Tamarit D, Ettema
TJG, Jinek M, et al: RNA-guided RNA silencing by an Asgard archaeal
Argonaute. Nat Commun. 15:54992024. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xie Q, Li Z, Luo X, Wang D, Zhou Y, Zhao
J, Gao S, Yang Y, Fu W, Kong L and Sun T: piRNA-14633 promotes
cervical cancer cell malignancy in a METTL14-dependent m6A RNA
methylation manner. J Transl Med. 20:512022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li D, Luo Y, Gao Y and Yang Y, Wang Y, Xu
Y, Tan S, Zhang Y, Duan J and Yang Y: piR-651 promotes tumor
formation in non-small cell lung carcinoma through the upregulation
of cyclin D1 and CDK4. Int J Mol Med. 38:927–936. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liu T, Wang J, Sun L, Li M, He X, Jiang J
and Zhou Q: Piwi-interacting RNA-651 promotes cell proliferation
and migration and inhibits apoptosis in breast cancer by
facilitating DNMT1-mediated PTEN promoter methylation. Cell Cycle.
20:1603–1616. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu Q, Chen Q, Zhou Z, Tian Z, Zheng X and
Wang K: piRNA-18 inhibition cell proliferation, migration and
invasion in colorectal cancer. Biochem Genet. 61:1881–1897. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Peng Q, Chen Y, Xie T, Pu D, Ho VW, Sun J,
Liu K, Chan RC, Ding X, Teoh JY, et al: PiRNA-4447944 promotes
castration-resistant growth and metastasis of prostate cancer by
inhibiting NEFH expression through forming the
piRNA-4447944-PIWIL2-NEFH complex. Int J Biol Sci. 20:3638–3655.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ben S, Ding Z, Xin J, Li F, Cheng Y, Chen
S, Fan L, Zhang Q, Li S, Du M, et al: piRNA PROPER suppresses DUSP1
translation by targeting N6-methyladenosine-mediated RNA
circularization to promote oncogenesis of prostate cancer. Adv Sci
(Weinh). 4:e24029542024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tan YT, Lin JF, Li T, Li JJ, Xu RH and Ju
HQ: LncRNA-mediated posttranslational modifications and
reprogramming of energy metabolism in cancer. Cancer Commun (Lond).
41:109–120. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Bridges MC, Daulagala AC and Kourtidis A:
LNCcation: lncRNA localization and function. J Cell Biol.
220:e2020090452021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bhan A, Soleimani M and Mandal SS: Long
noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dou DR, Zhao Y, Belk JA, Zhao Y, Casey KM,
Chen DC, Li R, Yu B, Srinivasan S, Abe BT, et al: Xist
ribonucleoproteins promote female sex-biased autoimmunity. Cell.
187:733–749.e16. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
van Heesch S, Witte F, Schneider-Lunitz V,
Schulz JF, Adami E, Faber AB, Kirchner M, Maatz H, Blachut S,
Sandmann CL, et al: The translational landscape of the human heart.
Cell. 178:242–260.e29. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Klinge CM: Estrogenic control of
mitochondrial function. Redox Biol. 31:1014352020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kopp F and Mendell JT: Functional
classification and experimental dissection of long noncoding RNAs.
Cell. 172:393–407. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Matsumoto A, Pasut A, Matsumoto M,
Yamashita R, Fung J, Monteleone E, Saghatelian A, Nakayama KI,
Clohessy JG and Pandolfi PP: mTORC1 and muscle regeneration are
regulated by the LINC00961-encoded SPAR polypeptide. Nature.
541:228–232. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hua Q, Jin M, Mi B, Xu F, Li T, Zhao L,
Liu J and Huang G: LINC01123, a c-Myc-activated long non-coding
RNA, promotes proliferation and aerobic glycolysis of non-small
cell lung cancer through miR-199a-5p/c-Myc axis. J Hematol Oncol.
12:912019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang Y, Chen H, Yuan R, Wang Y, Zhang D,
Zeng Q, Jiang W, Zhang R, Chen T, Chai C and Guo B: PDK1-stabilized
LncRNA SPRY4-IT1 promotes breast cancer progression via activating
NF-κB signaling pathway. Mol Carcinog. 62:1009–1024. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhou L, Jiang J, Huang Z, Jin P, Peng L,
Luo M, Zhang Z, Chen Y, Xie N, Gao W, et al: Hypoxia-induced lncRNA
STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal
cancer progression by preventing m6A-mediated degradation of STEAP3
mRNA. Mol Cancer. 21:1682022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang F, Hu Y, Wang H, Hu P, Xiong H, Zeng
Z, Han S, Wang D, Wang J, Zhao Y, et al: LncRNA FTO-IT1 promotes
glycolysis and progression of hepatocellular carcinoma through
modulating FTO-mediated N6-methyladenosine modification on GLUT1
and PKM2. J Exp Clin Cancer Res. 42:2672023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Peng P, Wang Y, Wang BL, Song YH, Fang Y,
Ji H, Huangfu CN, Wang KM and Zheng Q: LncRNA PSMA3-AS1 promotes
colorectal cancer cell migration and invasion via regulating
miR-4429. Eur Rev Med Pharmacol Sci. 24:11594–11601.
2020.PubMed/NCBI
|
|
70
|
Huang T, Chen Y, Zeng Y, Xu C, Huang J, Hu
W, Chen X and Fu H: Long non-coding RNA PSMA3-AS1 promotes glioma
progression through modulating the miR-411-3p/HOXA10 pathway. BMC
Cancer. 21:8442021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kong X, Duan Y, Sang Y, Li Y, Zhang H,
Liang Y, Liu Y, Zhang N and Yang Q: LncRNA-CDC6 promotes breast
cancer progression and function as ceRNA to target CDC6 by sponging
microRNA-215. J Cell Physiol. 234:9105–9117. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang Y, Gong Y, Ding Y, Sun S, Bai R, Zhuo
S and Zhang Z: LINC01133 promotes pancreatic ductal adenocarcinoma
epithelial-mesenchymal transition mediated by SPP1 through binding
to Arp3. Cell Death Dis. 15:4922024. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu C, Lu C, Yixi L, Hong J, Dong F, Ruan
S, Hu T and Zhao X: Exosomal Linc00969 induces trastuzumab
resistance in breast cancer by increasing HER-2 protein expression
and mRNA stability by binding to HUR. Breast Cancer Res.
25:1242023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fang D, Ou X, Sun K, Zhou X, Li Y, Shi P,
Zhao Z, He Y, Peng J and Xu J: m6A modification-mediated lncRNA
TP53TG1 inhibits gastric cancer progression by regulating CIP2A
stability. Cancer Sci. 113:4135–4150. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang J, Ye J, Dang Y and Xu S: LncRNA
PGM5-AS1 inhibits non-small cell lung cancer progression by
targeting miRNA-423-5p/SLIT2 axis. Cancer Cell Int. 24:2162024.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hu HF, Han L, Fu JY, He X, Tan JF, Chen
QP, Han JR and He QY: LINC00982-encoded protein PRDM16-DT regulates
CHEK2 splicing to suppress colorectal cancer metastasis and
chemoresistance. Theranostics. 14:3317–3338. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Hashemi M, Moosavi MS, Abed HM, Dehghani
M, Aalipour M, Heydari EA, Behroozaghdam M, Entezari M,
Salimimoghadam S, Gunduz ES, et al: Long non-coding RNA (lncRNA)
H19 in human cancer: From proliferation and metastasis to therapy.
Pharmacol Res. 184:1064182022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Su S, Liu L, Fu Q, Ma M, Yang N, Pan T,
Geng S, Yu XF and Zhu J: A black phosphorus nanosheet-based RNA
delivery system for prostate cancer therapy by increasing the
expression level of tumor suppressor gene PTEN via CeRNA mechanism.
J Nanobiotechnology. 22:3912024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Biomarkers Definitions Working Group, :
Biomarkers and surrogate endpoints: Preferred definitions and
conceptual framework. Clin Pharmacol Ther. 69:89–95. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang K, Luo Z, Zhang Y, Zhang L, Wu L,
Liu L, Yang J, Song X and Liu J: Circulating lncRNA H19 in plasma
as a novel biomarker for breast cancer. Cancer Biomark. 17:187–194.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Han B, Li S, Huang S, Huang J, Wu T and
Chen X: Cuproptosis-related lncRNA SNHG16 as a biomarker for the
diagnosis and prognosis of head and neck squamous cell carcinoma.
PeerJ. 11:e161972023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Mai D, Zheng Y, Guo H, Ding P, Bai R, Li
M, Ye Y, Zhang J, Huang X, Liu D, et al: Serum piRNA-54265 is a New
Biomarker for early detection and clinical surveillance of human
colorectal cancer. Theranostics. 10:8468–8478. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Rui T, Wang K, Xiang A, Guo J, Tang N, Jin
X, Lin Y, Liu J and Zhang X: Serum exosome-derived piRNAs could be
promising biomarkers for HCC diagnosis. Int J Nanomedicine.
18:1989–2001. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li X, Li Y, Yuan J, Zhang W, Xu T, Jing R
and Ju S: Serum tRF-33-RZYQHQ9M739P0J as a novel biomarker for
auxiliary diagnosis and disease course monitoring of hepatocellular
carcinoma. Heliyon. 10:e300842024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Moya L, Meijer J, Schubert S, Matin F and
Batra J: Assessment of miR-98-5p, miR-152-3p, miR-326 and miR-4289
expression as biomarker for prostate cancer diagnosis. Int J Mol
Sci. 20:11542019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Weng W, Liu N, Toiyama Y, Kusunoki M,
Nagasaka T, Fujiwara T, Wei Q, Qin H, Lin H, Ma Y and Goel A: Novel
evidence for a PIWI-interacting RNA (piRNA) as an oncogenic
mediator of disease progression, and a potential prognostic
biomarker in colorectal cancer. Mol Cancer. 17:162018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Jin F, Yang L, Wang W, Yuan N, Zhan S,
Yang P, Chen X, Ma T and Wang Y: A novel class of tsRNA signatures
as biomarkers for diagnosis and prognosis of pancreatic cancer. Mol
Cancer. 20:952021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wu Y, Liu L, He F, Zhang Y, Jiang W, Cao
Z, Xu X and Gong J: Long noncoding RNA small nucleolar RNA host
gene 1 as a potential novel biomarker for intraperitoneal free
cancer cells in colorectal cancer. iScience. 27:1102282024.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Li Y, Fang Z, Ge S, Li J, Qu L, Shi X,
Zhang W, Sun Y, Ren S and Wang L: Long non-coding RNA
ENST00000503625 is a potential prognostic biomarker and metastasis
suppressor gene in prostate cancer. J Cancer Res Clin Oncol.
149:7305–7317. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lian X, Pang L, Zhou H and Liu S:
Identification and validation of the TRHDE-AS1/hsa-miR-449a/ADAMTS5
axis as a novel prognostic biomarker in prostate cancer.
Biofactors. 50:1251–1267. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Feng J, Yang M, Wei Q, Song F, Zhang Y,
Wang X, Liu B and Li J: Novel evidence for oncogenic piRNA-823 as a
promising prognostic biomarker and a potential therapeutic target
in colorectal cancer. J Cell Mol Med. 24:9028–9040. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Woodward EA, Wang E, Wallis C, Sharma R,
Tie AWJ, Murthy N and Blancafort P: Protocol for delivery of
CRISPR/dCas9 systems for epigenetic editing into solid tumors using
lipid nanoparticles encapsulating RNA. Methods Mol Biol.
2842:267–287. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Issa II, Due H, Brøndum RF, Veeravakaran
V, Haraldsdóttir H, Sylvester C, Brogaard A, Dhanjal S, Schmierer B
and Dybkær K: CRISPR-Cas9 knockout screens identify DNA damage
response pathways and BTK as essential for cisplatin
response in diffuse large B-Cell lymphoma. Cancers (Basel).
16:24372024. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhu Z, Li H, Lu Q, Zhang Z, Li J, Wang Z,
Yang N, Yu Z, Yang C, Chen Y, et al: mRNA-engineered
CD5-CAR-γδTCD5- cells for the immunotherapy of T-cell acute
lymphoblastic leukemia. Adv Sci (Weinh). 16:e24000242024.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Slack FJ and Chinnaiyan AM: The role of
non-coding RNAs in oncology. Cell. 179:1033–1055. 2019. View Article : Google Scholar : PubMed/NCBI
|