|
1
|
Elahmer NR, Wong SK, Mohamed N, Alias E,
Chin KY and Muhammad N: Mechanistic insights and therapeutic
strategies in osteoporosis: A comprehensive review. Biomedicines.
12:16352024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wu S, Ye Z, Yan Y, Zhan X, Ren L, Zhou C,
Chen T, Yao Y, Zhu J, Wu S, et al: The causal relationship between
autoimmune diseases and osteoporosis: A study based on Mendelian
randomization. Front Endocrinol (Lausanne). 14:11962692023.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Avouac J, Koumakis E, Toth E, Meunier M,
Maury E, Kahan A, Cormier C and Allanore Y: Increased risk of
osteoporosis and fracture in women with systemic sclerosis: A
comparative study with rheumatoid arthritis. Arthritis Care Res
(Hoboken). 64:1871–1878. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Caffarelli C, Cameli P, Al Refaie A,
Giglio E, Manzana G, Mondillo C, Noacco Y, Olivieri C, Bargagli E
and Gonnelli S: Bone fragility and sarcoidosis: An underestimated
relationship. Front Med (Lausanne). 9:10260282022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Amarasekara DS, Yu J and Rho J: Bone loss
triggered by the cytokine network in inflammatory autoimmune
diseases. J Immunol Res. 2015:8321272015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lin D, Li L, Sun Y, Wang W, Wang X, Ye Y,
Chen X and Xu Y: IL-17 regulates the expressions of RANKL and OPG
in human periodontal ligament cells via TRAF6/TBK1-JNK/NF-κB
pathways. Immunology. 144:472–485. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kao FC, Hsu YC, Tu YK, Chen TS, Wang HH
and Lin JC: Long-term use of immunosuppressive agents increased the
risk of fractures in patients with autoimmune diseases: An 18-year
population-based cohort study. Biomedicines. 11:27642023.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Satoh K, Mark H, Zachrisson P, Rydevik B,
Byröd G, Kikuchi S, Konno S and Sekiguchi M: Effect of methotrexate
on fracture healing. Fukushima J Med Sci. 57:11–18. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wong SK: Repurposing new use for old drug
chloroquine against metabolic syndrome: A review on animal and
human evidence. Int J Med Sci. 18:2673–2688. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Dima A, Jurcut C and Arnaud L:
Hydroxychloroquine in systemic and autoimmune diseases: Where are
we now? Joint Bone Spine. 88:1051432021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Verbaanderd C, Maes H, Schaaf MB, Sukhatme
VP, Pantziarka P, Sukhatme V, Agostinis P and Bouche G: Repurposing
drugs in oncology (ReDO)-chloroquine and hydroxychloroquine as
anti-cancer agents. Ecancermedicalscience. 11:7812017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hashem AM, Alghamdi BS, Algaissi AA,
Alshehri FS, Bukhari A, Alfaleh MA and Memish ZA: Therapeutic use
of chloroquine and hydroxychloroquine in COVID-19 and other viral
infections: A narrative review. Travel Med Infect Dis.
35:1017352020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hong WJ, Chen W, Yeo KJ, Huang PH, Chen DY
and Lan JL: Increased risk of osteoporotic vertebral fracture in
rheumatoid arthritis patients with new-onset cardiovascular
diseases: A retrospective nationwide cohort study in Taiwan.
Osteoporos Int. 30:1617–1625. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nakajima T, Doi H, Watanabe R, Murata K,
Takase Y, Inaba R, Itaya T, Iwasaki T, Shirakashi M, Tsuji H, et
al: Factors associated with osteoporosis and fractures in patients
with systemic lupus erythematosus: Kyoto Lupus Cohort. Mod
Rheumatol. 34:113–121. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ekenstam EA, Ljunghall S and Hällgren R:
Serum osteocalcin in rheumatoid arthritis and other inflammatory
arthritides: Relation between inflammatory activity and the effect
of glucocorticoids and remission inducing drugs. Ann Rheum Dis.
45:484–490. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Both T, Zillikens MC, Schreuders-Koedam M,
Vis M, Lam WK, Weel A, van Leeuwen J, van Hagen PM, van der Eerden
BCJ and van Daele PLA: Hydroxychloroquine affects bone resorption
both in vitro and in vivo. J Cell Physiol. 233:1424–1433. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yu JJ, Wu F, Ma RR, Wu TJ, Zhang Y and
Ying ZH: The effects of iguratimod combined with methotrexate and
hydroxychloroquine on bone mineral density in patients with
rheumatoid arthritis. Pharmazie. 76:507–510. 2021.PubMed/NCBI
|
|
18
|
Park SJ, Sim SY, Jeong DC, Suh BK and Ahn
MB: Factors affecting bone mineral density in children and
adolescents with systemic lupus erythematosus. Ann Pediatr
Endocrinol Metab. 29:191–200. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Heidari B, Monadi M and Ghazi Mirsaed MA:
Bone mineral density changes during treatment of rheumatoid
arthritis with disease-modifying-anti-rheumatic drugs. Caspian J
Intern Med. 3:354–357. 2012.PubMed/NCBI
|
|
20
|
Carbone L, Vasan S, Elam R, Gupta S,
Tolaymat O, Crandall C, Wactawski-Wende J and Johnson KC: The
association of methotrexate, sulfasalazine, and hydroxychloroquine
use with fracture in postmenopausal women with rheumatoid
arthritis: Findings from the women's health initiative. JBMR Plus.
4:e103932020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Fischer VW and Fitch CD: Affinity of
chloroquine for bone. J Pharm Pharmacol. 27:527–529. 1975.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chaichit S, Sato T, Yu H, Tanaka YK, Ogra
Y, Mizoguchi T and Itoh M: Evaluation of Dexamethasone-induced
osteoporosis in vivo using zebrafish scales. Pharmaceuticals
(Basel). 14:5362021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Aoki S, Shimizu K and Ito K:
Autophagy-dependent mitochondrial function regulates osteoclast
differentiation and maturation. Biochem Biophys Res Commun.
527:874–880. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lin NY, Chen CW, Kagwiria R, Liang R,
Beyer C, Distler A, Luther J, Engelke K, Schett G and Distler JH:
Inactivation of autophagy ameliorates glucocorticoid-induced and
ovariectomy-induced bone loss. Ann Rheum Dis. 75:1203–1210. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yousefzadeh N, Kashfi K, Jeddi S and
Ghasemi A: Ovariectomized rat model of osteoporosis: A practical
guide. EXCLI J. 19:89–107. 2020.PubMed/NCBI
|
|
26
|
Xiong Y, Huang CW, Shi C, Peng L, Cheng
YT, Hong W and Liao J: Quercetin suppresses ovariectomy-induced
osteoporosis in rat mandibles by regulating autophagy and the NLRP3
pathway. Exp Biol Med (Maywood). 248:2363–2380. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Xiu Y, Xu H, Zhao C, Li J, Morita Y, Yao
Z, Xing L and Boyce BF: Chloroquine reduces osteoclastogenesis in
murine osteoporosis by preventing TRAF3 degradation. J Clin Invest.
124:297–310. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Liang X, Hou Z, Xie Y, Yan F, Li S, Zhu X
and Cai L: Icariin promotes osteogenic differentiation of bone
marrow stromal cells and prevents bone loss in OVX mice via
activating autophagy. J Cell Biochem. 120:13121–13132. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ke D, Wang Y, Yu Y, Wang Y, Zheng W, Fu X,
Han J, Zhang G and Xu J: Curcumin-activated autophagy plays a
negative role in its anti-osteoclastogenic effect. Mol Cell
Endocrinol. 500:1106372020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Al-Bari MAA, Shinohara M, Nagai Y and
Takayanagi H: Inhibitory effect of chloroquine on bone resorption
reveals the key role of lysosomes in osteoclast differentiation and
function. Inflammation and Regeneration. 32:222–231. 2012.
View Article : Google Scholar
|
|
31
|
Wang S, Feng W, Liu J, Wang X, Zhong L, Lv
C, Feng M, An N and Mao Y: Alginate oligosaccharide alleviates
senile osteoporosis via the RANKL-RANK pathway in
D-galactose-induced C57BL/6J mice. Chem Biol Drug Des. 99:46–55.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Imerb N, Thonusin C, Pratchayasakul W,
Arunsak B, Nawara W, Ongnok B, Aeimlapa R, Charoenphandhu N,
Chattipakorn N and Chattipakorn SC: D-galactose-induced aging
aggravates obesity-induced bone dyshomeostasis. Sci Rep.
12:85802022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mahmoud MAA, Saleh DO, Safar MM, Agha AM
and Khattab MM: Chloroquine ameliorates bone loss induced by
d-galactose in male rats via inhibition of ERK associated
osteoclastogenesis and antioxidant effect. Toxicol Rep. 8:366–375.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Alam I, Gerard-O'Riley RL, Acton D,
Hardman SL, Hong JM, Bruzzaniti A and Econs MJ: Chloroquine
increases osteoclast activity in vitro but does not improve the
osteopetrotic bone phenotype of ADO2 mice. Bone. 153:1161602021.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Teixeira CC, Liu Y, Thant LM, Pang J,
Palmer G and Alikhani M: Foxo1, a novel regulator of osteoblast
differentiation and skeletogenesis. J Biol Chem. 285:31055–31065.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jiang Y, Luo W, Zhou F, Gong P and Xiong
Y: The role of FOXO1-mediated autophagy in the regulation of bone
formation. Cell Cycle. 22:829–840. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li Q, Yue T, Du X, Tang Z, Cui J, Wang W,
Xia W, Ren B, Kan S, Li C, et al: HSC70 mediated autophagic
degradation of oxidized PRL2 is responsible for osteoclastogenesis
and inflammatory bone destruction. Cell Death Differ. 30:647–659.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Topak D, Gürbüz K, Doğar F, Bakır E,
Gürbüz P, Kılınç E, Bilal Ö and Eken A: Hydroxychloroquine induces
oxidative stress and impairs fracture healing in rats. Jt Dis Relat
Surg. 34:346–355. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Önaloğlu Y, Beytemür O, Saraç EY, Biçer O,
Güleryüz Y and Güleç MA: The effects of hydroxychloroquine-induced
oxidative stress on fracture healing in an experimental rat model.
Jt Dis Relat Surg. 35:146–155. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tekçe G, Arıcan M, Karaduman ZO, Turhan Y,
Sağlam S, Yücel MO, Coşkun SK, Tuncer C and Uludağ V: Radiologic
and histopathologic effects of favipiravir and hydroxychloroquine
on fracture healing in rats. Naunyn Schmiedebergs Arch Pharmacol.
397:7857–7864. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Xu G, Li X, Zhu Z, Wang H and Bai X: Iron
overload induces apoptosis and cytoprotective autophagy regulated
by ROS generation in Mc3t3-E1 cells. Biol Trace Elem Res.
199:3781–3792. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li Y, Yu P, Gao Y, Ma Z, Wang H, Long Y,
Ma Z and Liu R: Effects of the combination of Epimedii Folium and
Ligustri Lucidi Fructus on apoptosis and autophagy in SOP rats and
osteoblasts via PI3K/AKT/mTOR pathway. Biomed Pharmacother.
173:1163462024. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Qiu Y, Zhao Y, Long Z, Song A, Huang P,
Wang K, Xu L, Molloy DP and He G: Liquiritigenin promotes
osteogenic differentiation and prevents bone loss via inducing
auto-lysosomal degradation and inhibiting apoptosis. Genes Dis.
10:284–300. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pantovic A, Krstic A, Janjetovic K, Kocic
J, Harhaji-Trajkovic L, Bugarski D and Trajkovic V: Coordinated
time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy
controls osteogenic differentiation of human mesenchymal stem
cells. Bone. 52:524–531. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang Z, Lai Q and Li Y, Xu C, Tang X, Ci
J, Sun S, Xu B and Li Y: Acidic pH environment induces autophagy in
osteoblasts. Sci Rep. 7:461612017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhang Y, Zhang ZN, Li N, Zhao LJ, Xue Y,
Wu HJ and Hou JM: Nbr1-regulated autophagy in Lactoferrin-induced
osteoblastic differentiation. Biosci Biotechnol Biochem.
84:1191–1200. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yi L, Zhong T, Huang Y and Huang S:
Triiodothyronine promotes the osteoblast formation by activating
autophagy. Biophys Chem. 267:1064832020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhao X, Huang B, Wang H, Ni N, He F, Liu
Q, Shi D, Chen C, Zhao P, Wang X, et al: A functional autophagy
pathway is essential for BMP9-induced osteogenic differentiation of
mesenchymal stem cells (MSCs). Am J Transl Res. 13:4233–4250.
2021.PubMed/NCBI
|
|
49
|
Xu X, Wang R, Wu R, Yan W, Shi T, Jiang Q
and Shi D: Trehalose reduces bone loss in experimental biliary
cirrhosis rats via ERK phosphorylation regulation by enhancing
autophagosome formation. FASEB J. 34:8402–8415. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ni Y, Zhang H and Li Z and Li Z:
Connective tissue growth factor (CCN2) inhibits TNF-α-induced
apoptosis by enhancing autophagy through the Akt and Erk pathways
in osteoblasts. Pharmazie. 75:213–217. 2020.PubMed/NCBI
|
|
51
|
Liu W, Dai N, Wang Y, Xu C, Zhao H, Xia P,
Gu J, Liu X, Bian J, Yuan Y, et al: Role of autophagy in
cadmium-induced apoptosis of primary rat osteoblasts. Sci Rep.
6:204042016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Both T, van de Peppel HJ, Zillikens MC,
Koedam M, van Leeuwen J, van Hagen PM, van Daele PLA and van der
Eerden BCJ: Hydroxychloroquine decreases human MSC-derived
osteoblast differentiation and mineralization in vitro. J
Cell Mol Med. 22:873–882. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hu J, Zeng XY, Song CC and Zhang L:
Lipopolysaccharide promotes the osteoclastogenesis through the
autophagic degradation of TNF receptor-associated factor 3.
Scienceasia. 48:697–704. 2022. View Article : Google Scholar
|
|
54
|
Sun J, Chen W, Li S, Yang S, Zhang Y, Hu
X, Qiu H, Wu J, Xu S and Chu T: Nox4 Promotes RANKL-induced
autophagy and osteoclastogenesis via activating
ROS/PERK/eIF-2α/ATF4 pathway. Front Pharmacol. 12:7518452021.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wu CH, Ou CH, Yen IC and Lee SY:
4-Acetylantroquinonol B inhibits osteoclastogenesis by inhibiting
the autophagy pathway in a simulated microgravity model. Int J Mol
Sci. 21:69712020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yao Z, Lei W, Duan R, Li Y, Luo L and
Boyce BF: RANKL cytokine enhances TNF-induced osteoclastogenesis
independently of TNF receptor associated factor (TRAF) 6 by
degrading TRAF3 in osteoclast precursors. J Biol Chem.
292:10169–10179. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tong X, Gu J, Song R, Wang D, Sun Z, Sui
C, Zhang C, Liu X, Bian J and Liu Z: Osteoprotegerin inhibit
osteoclast differentiation and bone resorption by enhancing
autophagy via AMPK/mTOR/p70S6K signaling pathway in vitro. J Cell
Biochem. 120:1630–1642. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhao H, Sun Z, Ma Y, Song R, Yuan Y, Bian
J, Gu J and Liu Z: Antiosteoclastic bone resorption activity of
osteoprotegerin via enhanced AKT/mTOR/ULK1-mediated autophagic
pathway. J Cell Physiol. 235:3002–3012. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Song L, Tan J, Wang Z, Ding P, Tang Q, Xia
M, Wei Y and Chen L: Interleukin-17A facilitates osteoclast
differentiation and bone resorption via activation of autophagy in
mouse bone marrow macrophages. Mol Med Rep. 19:4743–4752.
2019.PubMed/NCBI
|
|
60
|
Ke D, Fu X, Xue Y, Wu H, Zhang Y, Chen X
and Hou J: IL-17A regulates the autophagic activity of osteoclast
precursors through RANKL-JNK1 signaling during osteoclastogenesis
in vitro. Biochem Biophys Res Commun. 497:890–896. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Rieman DJ, McClung HA, Dodds RA, Hwang SM,
Holmes MW, James IE, Drake FH and Gowen M: Biosynthesis and
processing of cathepsin K in cultured human osteoclasts. Bone.
28:282–289. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Su B, Li D, Xu J, Zhang Y, Cai Z, Kauther
MD and Ma R: Wear particles enhance autophagy through up-regulation
of CD147 to promote osteoclastogenesis. Iran J Basic Med Sci.
21:806–812. 2018.PubMed/NCBI
|
|
63
|
Voronov I, Ochotny N, Jaumouillé V, Owen
C, Manolson MF and Aubin JE: The R740S mutation in the V-ATPase a3
subunit increases lysosomal pH, impairs NFATc1 translocation, and
decreases in vitro osteoclastogenesis. J Bone Miner Res.
28:108–118. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Huang Y, Gao X, An Y, Zeng P, Chen C, Ma W
and Yao X: Inhibitory effect of jinwujiangu prescription on
peripheral blood osteoclasts in patients with rheumatoid arthritis
and the relevant molecular mechanism. Mediators Inflamm.
2023:48144122023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lee CK, Lee EY, Chung SM, Mun SH, Yoo B
and Moon HB: Effects of disease-modifying antirheumatic drugs and
antiinflammatory cytokines on human osteoclastogenesis through
interaction with receptor activator of nuclear factor kappaB,
osteoprotegerin, and receptor activator of nuclear factor kappaB
ligand. Arthritis Rheum. 50:3831–3843. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kar R, Riquelme MA, Hua R and Jiang JX:
Glucocorticoid-induced autophagy protects osteocytes against
oxidative stress through activation of MAPK/ERK signaling. JBMR
Plus. 3:e100772019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wong SK, Chin KY and Ima-Nirwana S:
Berberine and musculoskeletal disorders: The therapeutic potential
and underlying molecular mechanisms. Phytomedicine. 73:1528922020.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ito Y, Inoue D, Kido S and Matsumoto T:
c-Fos degradation by the ubiquitin-proteasome proteolytic pathway
in osteoclast progenitors. Bone. 37:842–849. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Okusha Y, Tran MT, Itagaki M, Sogawa C,
Eguchi T, Okui T, Kadowaki T, Sakai E, Tsukuba T and Okamoto K:
Rab11A functions as a negative regulator of osteoclastogenesis
through dictating lysosome-induced proteolysis of c-fms and RANK
surface receptors. Cells. 9:23842020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tran MT, Okusha Y, Feng Y, Morimatsu M,
Wei P, Sogawa C, Eguchi T, Kadowaki T, Sakai E, Okamura H, et al:
The inhibitory role of Rab11b in osteoclastogenesis through
triggering lysosome-induced degradation of c-Fms and RANK surface
receptors. Int J Mol Sci. 21:93522020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Florencio-Silva R, Sasso GR, Simões MJ,
Simões RS, Baracat MC, Sasso-Cerri E and Cerri PS: Osteoporosis and
autophagy: What is the relationship? Rev Assoc Med Bras (1992).
63:173–179. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hansen M, Rubinsztein DC and Walker DW:
Autophagy as a promoter of longevity: Insights from model
organisms. Nat Rev Mol Cell Biol. 19:579–593. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wong SK, Chin KY and Ima-Nirwana S: The
osteoprotective effects of kaempferol: The evidence from in vivo
and in vitro studies. Drug Des Devel Ther. 13:3497–3514. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang J, Zhang Y, Cao J, Wang Y, Anwar N,
Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L, et al: The role of
autophagy in bone metabolism and clinical significance. Autophagy.
19:2409–2427. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yin X, Zhou C, Li J, Liu R, Shi B, Yuan Q
and Zou S: Autophagy in bone homeostasis and the onset of
osteoporosis. Bone Res. 7:282019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang P, Liao J, Wang X and Feng Z: High
glucose promotes apoptosis and autophagy of MC3T3-E1 osteoblasts.
Arch Med Sci. 19:138–150. 2023.PubMed/NCBI
|
|
77
|
Ni Y, Zhang H, Zhang J and Li Z and Li Z:
Inhibition of JAK2 by AG490 promotes TNF-α-induced apoptosis by
inhibiting autophagy in MC3T3-E1 cells. Pharmazie. 75:255–260.
2020.PubMed/NCBI
|
|
78
|
Liu F, Yuan Y, Bai L, Yuan L, Li L, Liu J,
Chen Y, Lu Y, Cheng J and Zhang J: LRRc17 controls BMSC senescence
via mitophagy and inhibits the therapeutic effect of BMSCs on
ovariectomy-induced bone loss. Redox Biol. 43:1019632021.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yang Q, Zou Y, Wei X, Ye P, Wu Y, Ai H,
Zhang Z, Tan J, Zhou J, Yang Y, et al: PTP1B knockdown alleviates
BMSCs senescence via activating AMPK-mediated mitophagy and
promotes osteogenesis in senile osteoporosis. Biochim Biophys Acta
Mol Basis Dis. 1869:1667952023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hu Y, Carraro-Lacroix LR, Wang A, Owen C,
Bajenova E, Corey PN, Brumell JH and Voronov I: Lysosomal pH plays
a key role in regulation of mTOR activity in osteoclasts. J Cell
Biochem. 117:413–425. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wong SK, Chin KY and Ima-Nirwana S:
Quercetin as an agent for protecting the bone: A review of the
current evidence. Int J Mol Sci. 21:64482020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wong SK, Mohamad NV, Ibrahim N, Chin KY,
Shuid AN and Ima-Nirwana S: The molecular mechanism of Vitamin E as
a bone-protecting agent: A review on current evidence. Int J Mol
Sci. 20:14532019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li X, Xu J, Dai B, Wang X, Guo Q and Qin
L: Targeting autophagy in osteoporosis: From pathophysiology to
potential therapy. Ageing Res Rev. 62:1010982020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Askarian F, Firoozi Z, Ebadollahi-Natanzi
A, Bahrami S and Rahimi HR: A review on the pharmacokinetic
properties and toxicity considerations for chloroquine and
hydroxychloroquine to potentially treat coronavirus patients.
Toxicol Res. 38:137–148. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Browning DJ: Pharmacology of chloroquine
and hydroxychloroquine. Hydroxychloroquine and Chloroquine
Retinopathy. Springer Nature. 35–63. 2014.
|
|
86
|
Stokkermans TJ, Falkowitz DM and Trichonas
G: Chloroquine and Hydroxychloroquine Toxicity. Treasure Island:
StatPearls Publishing; 2024
|
|
87
|
Ruamviboonsuk P, Lai TYY, Chang A, Lai CC,
Mieler WF and Lam DSC: Chloroquine and hydroxychloroquine retinal
toxicity consideration in the treatment of COVID-19. Asia Pac J
Ophthalmol (Phila). 9:85–87. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Cohen IV, Makunts T, Moumedjian T, Issa MA
and Abagyan R: Cardiac adverse events associated with chloroquine
and hydroxychloroquine exposure in 20 years of drug safety
surveillance reports. Sci Rep. 10:191992020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
National Institute for Health and Care
Excellence, . Guidelines, in Osteoporosis: assessing the risk of
fragility fracture. https://www.nice.org.uk/guidance/cg146April
29–2024
|
|
90
|
Jehoon O, Kwon HJ, Cho TH, Woo SH, Rhee YH
and Yang HM: Micro-computed tomography with contrast enhancement:
An excellent technique for soft tissue examination in humans. PLoS
One. 16:e02542642021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Greenblatt MB, Tsai JN and Wein MN: Bone
turnover markers in the diagnosis and monitoring of metabolic bone
disease. Clin Chem. 63:464–474. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
LeBoff MS, Greenspan SL, Insogna KL,
Lewiecki EM, Saag KG, Singer AJ and Siris ES: The Clinician's guide
to prevention and treatment of osteoporosis. Osteoporos Int.
33:2049–2102. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Stevens DM, Crist RM and Stern ST:
Nanomedicine reformulation of chloroquine and hydroxychloroquine.
Molecules. 26:1752020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Al-Bari MA: Chloroquine analogues in drug
discovery: New directions of uses, mechanisms of actions and toxic
manifestations from malaria to multifarious diseases. J Antimicrob
Chemother. 70:1608–1621. 2015. View Article : Google Scholar : PubMed/NCBI
|