Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2025 Volume 31 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2025 Volume 31 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Effects of chloroquine and hydroxychloroquine on bone health (Review)

  • Authors:
    • Sok Kuan Wong
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
    Copyright: © Wong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 168
    |
    Published online on: April 11, 2025
       https://doi.org/10.3892/mmr.2025.13533
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Chloroquine (CQ) and hydroxychloroquine (HCQ), which were initially used to treat malaria, are now also used to treat autoimmune and inflammatory diseases, which have gained notoriety during the coronavirus‑19 pandemic. The emerging uses of CQ and HCQ in cancer therapy, metabolic syndrome and bone disorders highlight their broad clinical potential. Patients with autoimmune and inflammatory conditions have a higher risk of suboptimal bone health because of chronic inflammation, immune dysregulation and medication use. In the present review, the use of CQ and HCQ in bone research was explored, particularly in terms of their effectiveness and mechanism in modulating bone homeostasis. CQ and HCQ inhibit osteoblastic activity by suppressing autophagy, inducing oxidative stress and promoting osteoblast apoptosis. CQ suppresses osteoclastic activity by blocking the receptor activator of nuclear factor κ‑Β/receptor activator of nuclear factor κ‑Β ligand interaction, autophagy and inflammation. HCQ inhibits osteoclastogenesis by increasing the expression levels of osteoprotegerin, inducing osteoclast apoptosis and reducing cytokines without affecting autophagy. With regard to the molecular machineries, CQ and HCQ inhibit bone formation and bone resorption. Variations in dose, frequency and duration of CQ and HCQ treatment result in heterogenous outcomes. Further research is necessary to clarify the net effects of CQ and HCQ on bone through studies specifically designed to explore their direct impact as the primary objective. The use of these medications is broadening particularly in patients with autoimmune diseases who are at risk of skeletal disorders. However, their safety profiles, adverse effects and contraindications must be carefully monitored when administered for long‑term use and in combination.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Elahmer NR, Wong SK, Mohamed N, Alias E, Chin KY and Muhammad N: Mechanistic insights and therapeutic strategies in osteoporosis: A comprehensive review. Biomedicines. 12:16352024. View Article : Google Scholar : PubMed/NCBI

2 

Wu S, Ye Z, Yan Y, Zhan X, Ren L, Zhou C, Chen T, Yao Y, Zhu J, Wu S, et al: The causal relationship between autoimmune diseases and osteoporosis: A study based on Mendelian randomization. Front Endocrinol (Lausanne). 14:11962692023. View Article : Google Scholar : PubMed/NCBI

3 

Avouac J, Koumakis E, Toth E, Meunier M, Maury E, Kahan A, Cormier C and Allanore Y: Increased risk of osteoporosis and fracture in women with systemic sclerosis: A comparative study with rheumatoid arthritis. Arthritis Care Res (Hoboken). 64:1871–1878. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Caffarelli C, Cameli P, Al Refaie A, Giglio E, Manzana G, Mondillo C, Noacco Y, Olivieri C, Bargagli E and Gonnelli S: Bone fragility and sarcoidosis: An underestimated relationship. Front Med (Lausanne). 9:10260282022. View Article : Google Scholar : PubMed/NCBI

5 

Amarasekara DS, Yu J and Rho J: Bone loss triggered by the cytokine network in inflammatory autoimmune diseases. J Immunol Res. 2015:8321272015. View Article : Google Scholar : PubMed/NCBI

6 

Lin D, Li L, Sun Y, Wang W, Wang X, Ye Y, Chen X and Xu Y: IL-17 regulates the expressions of RANKL and OPG in human periodontal ligament cells via TRAF6/TBK1-JNK/NF-κB pathways. Immunology. 144:472–485. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Kao FC, Hsu YC, Tu YK, Chen TS, Wang HH and Lin JC: Long-term use of immunosuppressive agents increased the risk of fractures in patients with autoimmune diseases: An 18-year population-based cohort study. Biomedicines. 11:27642023. View Article : Google Scholar : PubMed/NCBI

8 

Satoh K, Mark H, Zachrisson P, Rydevik B, Byröd G, Kikuchi S, Konno S and Sekiguchi M: Effect of methotrexate on fracture healing. Fukushima J Med Sci. 57:11–18. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Wong SK: Repurposing new use for old drug chloroquine against metabolic syndrome: A review on animal and human evidence. Int J Med Sci. 18:2673–2688. 2021. View Article : Google Scholar : PubMed/NCBI

10 

Dima A, Jurcut C and Arnaud L: Hydroxychloroquine in systemic and autoimmune diseases: Where are we now? Joint Bone Spine. 88:1051432021. View Article : Google Scholar : PubMed/NCBI

11 

Verbaanderd C, Maes H, Schaaf MB, Sukhatme VP, Pantziarka P, Sukhatme V, Agostinis P and Bouche G: Repurposing drugs in oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience. 11:7812017. View Article : Google Scholar : PubMed/NCBI

12 

Hashem AM, Alghamdi BS, Algaissi AA, Alshehri FS, Bukhari A, Alfaleh MA and Memish ZA: Therapeutic use of chloroquine and hydroxychloroquine in COVID-19 and other viral infections: A narrative review. Travel Med Infect Dis. 35:1017352020. View Article : Google Scholar : PubMed/NCBI

13 

Hong WJ, Chen W, Yeo KJ, Huang PH, Chen DY and Lan JL: Increased risk of osteoporotic vertebral fracture in rheumatoid arthritis patients with new-onset cardiovascular diseases: A retrospective nationwide cohort study in Taiwan. Osteoporos Int. 30:1617–1625. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Nakajima T, Doi H, Watanabe R, Murata K, Takase Y, Inaba R, Itaya T, Iwasaki T, Shirakashi M, Tsuji H, et al: Factors associated with osteoporosis and fractures in patients with systemic lupus erythematosus: Kyoto Lupus Cohort. Mod Rheumatol. 34:113–121. 2023. View Article : Google Scholar : PubMed/NCBI

15 

Ekenstam EA, Ljunghall S and Hällgren R: Serum osteocalcin in rheumatoid arthritis and other inflammatory arthritides: Relation between inflammatory activity and the effect of glucocorticoids and remission inducing drugs. Ann Rheum Dis. 45:484–490. 1986. View Article : Google Scholar : PubMed/NCBI

16 

Both T, Zillikens MC, Schreuders-Koedam M, Vis M, Lam WK, Weel A, van Leeuwen J, van Hagen PM, van der Eerden BCJ and van Daele PLA: Hydroxychloroquine affects bone resorption both in vitro and in vivo. J Cell Physiol. 233:1424–1433. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Yu JJ, Wu F, Ma RR, Wu TJ, Zhang Y and Ying ZH: The effects of iguratimod combined with methotrexate and hydroxychloroquine on bone mineral density in patients with rheumatoid arthritis. Pharmazie. 76:507–510. 2021.PubMed/NCBI

18 

Park SJ, Sim SY, Jeong DC, Suh BK and Ahn MB: Factors affecting bone mineral density in children and adolescents with systemic lupus erythematosus. Ann Pediatr Endocrinol Metab. 29:191–200. 2024. View Article : Google Scholar : PubMed/NCBI

19 

Heidari B, Monadi M and Ghazi Mirsaed MA: Bone mineral density changes during treatment of rheumatoid arthritis with disease-modifying-anti-rheumatic drugs. Caspian J Intern Med. 3:354–357. 2012.PubMed/NCBI

20 

Carbone L, Vasan S, Elam R, Gupta S, Tolaymat O, Crandall C, Wactawski-Wende J and Johnson KC: The association of methotrexate, sulfasalazine, and hydroxychloroquine use with fracture in postmenopausal women with rheumatoid arthritis: Findings from the women's health initiative. JBMR Plus. 4:e103932020. View Article : Google Scholar : PubMed/NCBI

21 

Fischer VW and Fitch CD: Affinity of chloroquine for bone. J Pharm Pharmacol. 27:527–529. 1975. View Article : Google Scholar : PubMed/NCBI

22 

Chaichit S, Sato T, Yu H, Tanaka YK, Ogra Y, Mizoguchi T and Itoh M: Evaluation of Dexamethasone-induced osteoporosis in vivo using zebrafish scales. Pharmaceuticals (Basel). 14:5362021. View Article : Google Scholar : PubMed/NCBI

23 

Aoki S, Shimizu K and Ito K: Autophagy-dependent mitochondrial function regulates osteoclast differentiation and maturation. Biochem Biophys Res Commun. 527:874–880. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Lin NY, Chen CW, Kagwiria R, Liang R, Beyer C, Distler A, Luther J, Engelke K, Schett G and Distler JH: Inactivation of autophagy ameliorates glucocorticoid-induced and ovariectomy-induced bone loss. Ann Rheum Dis. 75:1203–1210. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Yousefzadeh N, Kashfi K, Jeddi S and Ghasemi A: Ovariectomized rat model of osteoporosis: A practical guide. EXCLI J. 19:89–107. 2020.PubMed/NCBI

26 

Xiong Y, Huang CW, Shi C, Peng L, Cheng YT, Hong W and Liao J: Quercetin suppresses ovariectomy-induced osteoporosis in rat mandibles by regulating autophagy and the NLRP3 pathway. Exp Biol Med (Maywood). 248:2363–2380. 2023. View Article : Google Scholar : PubMed/NCBI

27 

Xiu Y, Xu H, Zhao C, Li J, Morita Y, Yao Z, Xing L and Boyce BF: Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation. J Clin Invest. 124:297–310. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Liang X, Hou Z, Xie Y, Yan F, Li S, Zhu X and Cai L: Icariin promotes osteogenic differentiation of bone marrow stromal cells and prevents bone loss in OVX mice via activating autophagy. J Cell Biochem. 120:13121–13132. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Ke D, Wang Y, Yu Y, Wang Y, Zheng W, Fu X, Han J, Zhang G and Xu J: Curcumin-activated autophagy plays a negative role in its anti-osteoclastogenic effect. Mol Cell Endocrinol. 500:1106372020. View Article : Google Scholar : PubMed/NCBI

30 

Al-Bari MAA, Shinohara M, Nagai Y and Takayanagi H: Inhibitory effect of chloroquine on bone resorption reveals the key role of lysosomes in osteoclast differentiation and function. Inflammation and Regeneration. 32:222–231. 2012. View Article : Google Scholar

31 

Wang S, Feng W, Liu J, Wang X, Zhong L, Lv C, Feng M, An N and Mao Y: Alginate oligosaccharide alleviates senile osteoporosis via the RANKL-RANK pathway in D-galactose-induced C57BL/6J mice. Chem Biol Drug Des. 99:46–55. 2022. View Article : Google Scholar : PubMed/NCBI

32 

Imerb N, Thonusin C, Pratchayasakul W, Arunsak B, Nawara W, Ongnok B, Aeimlapa R, Charoenphandhu N, Chattipakorn N and Chattipakorn SC: D-galactose-induced aging aggravates obesity-induced bone dyshomeostasis. Sci Rep. 12:85802022. View Article : Google Scholar : PubMed/NCBI

33 

Mahmoud MAA, Saleh DO, Safar MM, Agha AM and Khattab MM: Chloroquine ameliorates bone loss induced by d-galactose in male rats via inhibition of ERK associated osteoclastogenesis and antioxidant effect. Toxicol Rep. 8:366–375. 2021. View Article : Google Scholar : PubMed/NCBI

34 

Alam I, Gerard-O'Riley RL, Acton D, Hardman SL, Hong JM, Bruzzaniti A and Econs MJ: Chloroquine increases osteoclast activity in vitro but does not improve the osteopetrotic bone phenotype of ADO2 mice. Bone. 153:1161602021. View Article : Google Scholar : PubMed/NCBI

35 

Teixeira CC, Liu Y, Thant LM, Pang J, Palmer G and Alikhani M: Foxo1, a novel regulator of osteoblast differentiation and skeletogenesis. J Biol Chem. 285:31055–31065. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Jiang Y, Luo W, Zhou F, Gong P and Xiong Y: The role of FOXO1-mediated autophagy in the regulation of bone formation. Cell Cycle. 22:829–840. 2023. View Article : Google Scholar : PubMed/NCBI

37 

Li Q, Yue T, Du X, Tang Z, Cui J, Wang W, Xia W, Ren B, Kan S, Li C, et al: HSC70 mediated autophagic degradation of oxidized PRL2 is responsible for osteoclastogenesis and inflammatory bone destruction. Cell Death Differ. 30:647–659. 2023. View Article : Google Scholar : PubMed/NCBI

38 

Topak D, Gürbüz K, Doğar F, Bakır E, Gürbüz P, Kılınç E, Bilal Ö and Eken A: Hydroxychloroquine induces oxidative stress and impairs fracture healing in rats. Jt Dis Relat Surg. 34:346–355. 2023. View Article : Google Scholar : PubMed/NCBI

39 

Önaloğlu Y, Beytemür O, Saraç EY, Biçer O, Güleryüz Y and Güleç MA: The effects of hydroxychloroquine-induced oxidative stress on fracture healing in an experimental rat model. Jt Dis Relat Surg. 35:146–155. 2024. View Article : Google Scholar : PubMed/NCBI

40 

Tekçe G, Arıcan M, Karaduman ZO, Turhan Y, Sağlam S, Yücel MO, Coşkun SK, Tuncer C and Uludağ V: Radiologic and histopathologic effects of favipiravir and hydroxychloroquine on fracture healing in rats. Naunyn Schmiedebergs Arch Pharmacol. 397:7857–7864. 2024. View Article : Google Scholar : PubMed/NCBI

41 

Xu G, Li X, Zhu Z, Wang H and Bai X: Iron overload induces apoptosis and cytoprotective autophagy regulated by ROS generation in Mc3t3-E1 cells. Biol Trace Elem Res. 199:3781–3792. 2021. View Article : Google Scholar : PubMed/NCBI

42 

Li Y, Yu P, Gao Y, Ma Z, Wang H, Long Y, Ma Z and Liu R: Effects of the combination of Epimedii Folium and Ligustri Lucidi Fructus on apoptosis and autophagy in SOP rats and osteoblasts via PI3K/AKT/mTOR pathway. Biomed Pharmacother. 173:1163462024. View Article : Google Scholar : PubMed/NCBI

43 

Qiu Y, Zhao Y, Long Z, Song A, Huang P, Wang K, Xu L, Molloy DP and He G: Liquiritigenin promotes osteogenic differentiation and prevents bone loss via inducing auto-lysosomal degradation and inhibiting apoptosis. Genes Dis. 10:284–300. 2023. View Article : Google Scholar : PubMed/NCBI

44 

Pantovic A, Krstic A, Janjetovic K, Kocic J, Harhaji-Trajkovic L, Bugarski D and Trajkovic V: Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone. 52:524–531. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Zhang Z, Lai Q and Li Y, Xu C, Tang X, Ci J, Sun S, Xu B and Li Y: Acidic pH environment induces autophagy in osteoblasts. Sci Rep. 7:461612017. View Article : Google Scholar : PubMed/NCBI

46 

Zhang Y, Zhang ZN, Li N, Zhao LJ, Xue Y, Wu HJ and Hou JM: Nbr1-regulated autophagy in Lactoferrin-induced osteoblastic differentiation. Biosci Biotechnol Biochem. 84:1191–1200. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Yi L, Zhong T, Huang Y and Huang S: Triiodothyronine promotes the osteoblast formation by activating autophagy. Biophys Chem. 267:1064832020. View Article : Google Scholar : PubMed/NCBI

48 

Zhao X, Huang B, Wang H, Ni N, He F, Liu Q, Shi D, Chen C, Zhao P, Wang X, et al: A functional autophagy pathway is essential for BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs). Am J Transl Res. 13:4233–4250. 2021.PubMed/NCBI

49 

Xu X, Wang R, Wu R, Yan W, Shi T, Jiang Q and Shi D: Trehalose reduces bone loss in experimental biliary cirrhosis rats via ERK phosphorylation regulation by enhancing autophagosome formation. FASEB J. 34:8402–8415. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Ni Y, Zhang H and Li Z and Li Z: Connective tissue growth factor (CCN2) inhibits TNF-α-induced apoptosis by enhancing autophagy through the Akt and Erk pathways in osteoblasts. Pharmazie. 75:213–217. 2020.PubMed/NCBI

51 

Liu W, Dai N, Wang Y, Xu C, Zhao H, Xia P, Gu J, Liu X, Bian J, Yuan Y, et al: Role of autophagy in cadmium-induced apoptosis of primary rat osteoblasts. Sci Rep. 6:204042016. View Article : Google Scholar : PubMed/NCBI

52 

Both T, van de Peppel HJ, Zillikens MC, Koedam M, van Leeuwen J, van Hagen PM, van Daele PLA and van der Eerden BCJ: Hydroxychloroquine decreases human MSC-derived osteoblast differentiation and mineralization in vitro. J Cell Mol Med. 22:873–882. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Hu J, Zeng XY, Song CC and Zhang L: Lipopolysaccharide promotes the osteoclastogenesis through the autophagic degradation of TNF receptor-associated factor 3. Scienceasia. 48:697–704. 2022. View Article : Google Scholar

54 

Sun J, Chen W, Li S, Yang S, Zhang Y, Hu X, Qiu H, Wu J, Xu S and Chu T: Nox4 Promotes RANKL-induced autophagy and osteoclastogenesis via activating ROS/PERK/eIF-2α/ATF4 pathway. Front Pharmacol. 12:7518452021. View Article : Google Scholar : PubMed/NCBI

55 

Wu CH, Ou CH, Yen IC and Lee SY: 4-Acetylantroquinonol B inhibits osteoclastogenesis by inhibiting the autophagy pathway in a simulated microgravity model. Int J Mol Sci. 21:69712020. View Article : Google Scholar : PubMed/NCBI

56 

Yao Z, Lei W, Duan R, Li Y, Luo L and Boyce BF: RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors. J Biol Chem. 292:10169–10179. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Tong X, Gu J, Song R, Wang D, Sun Z, Sui C, Zhang C, Liu X, Bian J and Liu Z: Osteoprotegerin inhibit osteoclast differentiation and bone resorption by enhancing autophagy via AMPK/mTOR/p70S6K signaling pathway in vitro. J Cell Biochem. 120:1630–1642. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Zhao H, Sun Z, Ma Y, Song R, Yuan Y, Bian J, Gu J and Liu Z: Antiosteoclastic bone resorption activity of osteoprotegerin via enhanced AKT/mTOR/ULK1-mediated autophagic pathway. J Cell Physiol. 235:3002–3012. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Song L, Tan J, Wang Z, Ding P, Tang Q, Xia M, Wei Y and Chen L: Interleukin-17A facilitates osteoclast differentiation and bone resorption via activation of autophagy in mouse bone marrow macrophages. Mol Med Rep. 19:4743–4752. 2019.PubMed/NCBI

60 

Ke D, Fu X, Xue Y, Wu H, Zhang Y, Chen X and Hou J: IL-17A regulates the autophagic activity of osteoclast precursors through RANKL-JNK1 signaling during osteoclastogenesis in vitro. Biochem Biophys Res Commun. 497:890–896. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Rieman DJ, McClung HA, Dodds RA, Hwang SM, Holmes MW, James IE, Drake FH and Gowen M: Biosynthesis and processing of cathepsin K in cultured human osteoclasts. Bone. 28:282–289. 2001. View Article : Google Scholar : PubMed/NCBI

62 

Su B, Li D, Xu J, Zhang Y, Cai Z, Kauther MD and Ma R: Wear particles enhance autophagy through up-regulation of CD147 to promote osteoclastogenesis. Iran J Basic Med Sci. 21:806–812. 2018.PubMed/NCBI

63 

Voronov I, Ochotny N, Jaumouillé V, Owen C, Manolson MF and Aubin JE: The R740S mutation in the V-ATPase a3 subunit increases lysosomal pH, impairs NFATc1 translocation, and decreases in vitro osteoclastogenesis. J Bone Miner Res. 28:108–118. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Huang Y, Gao X, An Y, Zeng P, Chen C, Ma W and Yao X: Inhibitory effect of jinwujiangu prescription on peripheral blood osteoclasts in patients with rheumatoid arthritis and the relevant molecular mechanism. Mediators Inflamm. 2023:48144122023. View Article : Google Scholar : PubMed/NCBI

65 

Lee CK, Lee EY, Chung SM, Mun SH, Yoo B and Moon HB: Effects of disease-modifying antirheumatic drugs and antiinflammatory cytokines on human osteoclastogenesis through interaction with receptor activator of nuclear factor kappaB, osteoprotegerin, and receptor activator of nuclear factor kappaB ligand. Arthritis Rheum. 50:3831–3843. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Kar R, Riquelme MA, Hua R and Jiang JX: Glucocorticoid-induced autophagy protects osteocytes against oxidative stress through activation of MAPK/ERK signaling. JBMR Plus. 3:e100772019. View Article : Google Scholar : PubMed/NCBI

67 

Wong SK, Chin KY and Ima-Nirwana S: Berberine and musculoskeletal disorders: The therapeutic potential and underlying molecular mechanisms. Phytomedicine. 73:1528922020. View Article : Google Scholar : PubMed/NCBI

68 

Ito Y, Inoue D, Kido S and Matsumoto T: c-Fos degradation by the ubiquitin-proteasome proteolytic pathway in osteoclast progenitors. Bone. 37:842–849. 2005. View Article : Google Scholar : PubMed/NCBI

69 

Okusha Y, Tran MT, Itagaki M, Sogawa C, Eguchi T, Okui T, Kadowaki T, Sakai E, Tsukuba T and Okamoto K: Rab11A functions as a negative regulator of osteoclastogenesis through dictating lysosome-induced proteolysis of c-fms and RANK surface receptors. Cells. 9:23842020. View Article : Google Scholar : PubMed/NCBI

70 

Tran MT, Okusha Y, Feng Y, Morimatsu M, Wei P, Sogawa C, Eguchi T, Kadowaki T, Sakai E, Okamura H, et al: The inhibitory role of Rab11b in osteoclastogenesis through triggering lysosome-induced degradation of c-Fms and RANK surface receptors. Int J Mol Sci. 21:93522020. View Article : Google Scholar : PubMed/NCBI

71 

Florencio-Silva R, Sasso GR, Simões MJ, Simões RS, Baracat MC, Sasso-Cerri E and Cerri PS: Osteoporosis and autophagy: What is the relationship? Rev Assoc Med Bras (1992). 63:173–179. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Hansen M, Rubinsztein DC and Walker DW: Autophagy as a promoter of longevity: Insights from model organisms. Nat Rev Mol Cell Biol. 19:579–593. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Wong SK, Chin KY and Ima-Nirwana S: The osteoprotective effects of kaempferol: The evidence from in vivo and in vitro studies. Drug Des Devel Ther. 13:3497–3514. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Wang J, Zhang Y, Cao J, Wang Y, Anwar N, Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L, et al: The role of autophagy in bone metabolism and clinical significance. Autophagy. 19:2409–2427. 2023. View Article : Google Scholar : PubMed/NCBI

75 

Yin X, Zhou C, Li J, Liu R, Shi B, Yuan Q and Zou S: Autophagy in bone homeostasis and the onset of osteoporosis. Bone Res. 7:282019. View Article : Google Scholar : PubMed/NCBI

76 

Zhang P, Liao J, Wang X and Feng Z: High glucose promotes apoptosis and autophagy of MC3T3-E1 osteoblasts. Arch Med Sci. 19:138–150. 2023.PubMed/NCBI

77 

Ni Y, Zhang H, Zhang J and Li Z and Li Z: Inhibition of JAK2 by AG490 promotes TNF-α-induced apoptosis by inhibiting autophagy in MC3T3-E1 cells. Pharmazie. 75:255–260. 2020.PubMed/NCBI

78 

Liu F, Yuan Y, Bai L, Yuan L, Li L, Liu J, Chen Y, Lu Y, Cheng J and Zhang J: LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss. Redox Biol. 43:1019632021. View Article : Google Scholar : PubMed/NCBI

79 

Yang Q, Zou Y, Wei X, Ye P, Wu Y, Ai H, Zhang Z, Tan J, Zhou J, Yang Y, et al: PTP1B knockdown alleviates BMSCs senescence via activating AMPK-mediated mitophagy and promotes osteogenesis in senile osteoporosis. Biochim Biophys Acta Mol Basis Dis. 1869:1667952023. View Article : Google Scholar : PubMed/NCBI

80 

Hu Y, Carraro-Lacroix LR, Wang A, Owen C, Bajenova E, Corey PN, Brumell JH and Voronov I: Lysosomal pH plays a key role in regulation of mTOR activity in osteoclasts. J Cell Biochem. 117:413–425. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Wong SK, Chin KY and Ima-Nirwana S: Quercetin as an agent for protecting the bone: A review of the current evidence. Int J Mol Sci. 21:64482020. View Article : Google Scholar : PubMed/NCBI

82 

Wong SK, Mohamad NV, Ibrahim N, Chin KY, Shuid AN and Ima-Nirwana S: The molecular mechanism of Vitamin E as a bone-protecting agent: A review on current evidence. Int J Mol Sci. 20:14532019. View Article : Google Scholar : PubMed/NCBI

83 

Li X, Xu J, Dai B, Wang X, Guo Q and Qin L: Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res Rev. 62:1010982020. View Article : Google Scholar : PubMed/NCBI

84 

Askarian F, Firoozi Z, Ebadollahi-Natanzi A, Bahrami S and Rahimi HR: A review on the pharmacokinetic properties and toxicity considerations for chloroquine and hydroxychloroquine to potentially treat coronavirus patients. Toxicol Res. 38:137–148. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Browning DJ: Pharmacology of chloroquine and hydroxychloroquine. Hydroxychloroquine and Chloroquine Retinopathy. Springer Nature. 35–63. 2014.

86 

Stokkermans TJ, Falkowitz DM and Trichonas G: Chloroquine and Hydroxychloroquine Toxicity. Treasure Island: StatPearls Publishing; 2024

87 

Ruamviboonsuk P, Lai TYY, Chang A, Lai CC, Mieler WF and Lam DSC: Chloroquine and hydroxychloroquine retinal toxicity consideration in the treatment of COVID-19. Asia Pac J Ophthalmol (Phila). 9:85–87. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Cohen IV, Makunts T, Moumedjian T, Issa MA and Abagyan R: Cardiac adverse events associated with chloroquine and hydroxychloroquine exposure in 20 years of drug safety surveillance reports. Sci Rep. 10:191992020. View Article : Google Scholar : PubMed/NCBI

89 

National Institute for Health and Care Excellence, . Guidelines, in Osteoporosis: assessing the risk of fragility fracture. https://www.nice.org.uk/guidance/cg146April 29–2024

90 

Jehoon O, Kwon HJ, Cho TH, Woo SH, Rhee YH and Yang HM: Micro-computed tomography with contrast enhancement: An excellent technique for soft tissue examination in humans. PLoS One. 16:e02542642021. View Article : Google Scholar : PubMed/NCBI

91 

Greenblatt MB, Tsai JN and Wein MN: Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem. 63:464–474. 2017. View Article : Google Scholar : PubMed/NCBI

92 

LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ and Siris ES: The Clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int. 33:2049–2102. 2022. View Article : Google Scholar : PubMed/NCBI

93 

Stevens DM, Crist RM and Stern ST: Nanomedicine reformulation of chloroquine and hydroxychloroquine. Molecules. 26:1752020. View Article : Google Scholar : PubMed/NCBI

94 

Al-Bari MA: Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 70:1608–1621. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wong S: Effects of chloroquine and hydroxychloroquine on bone health (Review). Mol Med Rep 31: 168, 2025.
APA
Wong, S. (2025). Effects of chloroquine and hydroxychloroquine on bone health (Review). Molecular Medicine Reports, 31, 168. https://doi.org/10.3892/mmr.2025.13533
MLA
Wong, S."Effects of chloroquine and hydroxychloroquine on bone health (Review)". Molecular Medicine Reports 31.6 (2025): 168.
Chicago
Wong, S."Effects of chloroquine and hydroxychloroquine on bone health (Review)". Molecular Medicine Reports 31, no. 6 (2025): 168. https://doi.org/10.3892/mmr.2025.13533
Copy and paste a formatted citation
x
Spandidos Publications style
Wong S: Effects of chloroquine and hydroxychloroquine on bone health (Review). Mol Med Rep 31: 168, 2025.
APA
Wong, S. (2025). Effects of chloroquine and hydroxychloroquine on bone health (Review). Molecular Medicine Reports, 31, 168. https://doi.org/10.3892/mmr.2025.13533
MLA
Wong, S."Effects of chloroquine and hydroxychloroquine on bone health (Review)". Molecular Medicine Reports 31.6 (2025): 168.
Chicago
Wong, S."Effects of chloroquine and hydroxychloroquine on bone health (Review)". Molecular Medicine Reports 31, no. 6 (2025): 168. https://doi.org/10.3892/mmr.2025.13533
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team