|
1
|
Zheng C, Liu T, Liu H and Wang J: Role of
BCL-2 family proteins in apoptosis and its regulation by nutrients.
Curr Protein Pept Sci. 21:799–806. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
D'Aguanno S and Del Bufalo D: Inhibition
of Anti-Apoptotic Bcl-2 proteins in preclinical and clinical
studies: Current overview in cancer. Cells. 9:12872020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Aslam M, Kanthlal SK and Panonummal R:
Peptides: A supercilious candidate for activating intrinsic
apoptosis by targeting mitochondrial membrane permeability for
cancer therapy. Int J Pept Res Ther. 27:2883–2893. 2021. View Article : Google Scholar
|
|
4
|
Wolf P, Schoeniger A and Edlich F:
Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial
membrane. Biochim Biophys Acta Mol Cell Res. 1869:1193172022.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Shahar N and Larisch S: Inhibiting the
inhibitors: Targeting anti-apoptotic proteins in cancer and therapy
resistance. Drug Resist Updat. 52:1007122020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Banjara S, Suraweera CD, Hinds MG and
Kvansakul M: The Bcl-2 family: ancient origins, conserved
structures, and divergent mechanisms. Biomolecules. 10:1282020.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wang L, Klionsky DJ and Shen HM: The
emerging mechanisms and functions of microautophagy. Nat Rev Mol
Cell Biol. 24:186–203. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kumar R, Chhikara BS, Gulia K and Chhillar
M: Cleaning the molecular machinery of cells via proteostasis,
proteolysis and endocytosis selectively, effectively, and
precisely: Intracellular self-defense and cellular perturbations.
Mol Omics. 17:11–28. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Alqahtani SM, Alassiri HA, Alshahrani MSM,
Alahmari NA, Alshahrani NZS, Alqahtani AA and Alqahtani AM:
Cellular responses to ionizing radiation: Mechanisms of DNA repair
and mutation. JICRCR. 7:2299–2315. 2024.
|
|
10
|
Bertheloot D, Latz E and Franklin BS:
Necroptosis, pyroptosis and apoptosis: An intricate game of cell
death. Cell Mol Immunol. 18:1106–1121. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bernardi P, Gerle C, Halestrap AP, Jonas
EA, Karch J, Mnatsakanyan N and Soukas AA: Identity, structure, and
function of the mitochondrial permeability transition pore:
controversies, consensus, recent advances, and future directions.
Cell Death Differ. 30:1869–1885. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang Z, Wang Q, Zhang H, Wang S, Ma X and
Wang H: Golm1 facilitates the CaO2-DOPC-DSPE200-PEI-CsPbBr3
QDs-induced apoptotic death of hepatocytes through the stimulation
of mitochondrial autophagy and mitochondrial reactive oxygen
species production through interactions with P53/Beclin-1/Bcl-2.
Chem Biol Interact. 398:1110762024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zając A, Maciejczyk A, Sumorek-Wiadro J,
Filipek K, Deryło K, Langner E, Pawelec J, Wasiak M, Ścibiorski M,
Rzeski W, et al: The role of Bcl-2 and Beclin-1 complex in
‘switching’ between apoptosis and autophagy in human glioma cells
upon LY294002 and sorafenib treatment. Cells. 12:26702023.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Prerna K and Dubey VK: Beclin1-mediated
interplay between autophagy and apoptosis: New understanding. Int J
Biol Macromol. 204:258–273. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Rosa N, Speelman-Rooms F, Parys JB and
Bultynck G: Modulation of Ca2+ signaling by antiapoptotic Bcl-2
versus Bcl-xL: From molecular mechanisms to relevance for cancer
cell survival. Biochim Biophys Acta Rev Cancer. 1877:1887912022.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Saleem S: Apoptosis, autophagy, necrosis
and their multi galore crosstalk in neurodegeneration.
Neuroscience. 469:162–174. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Sukumaran P, Nascimento Da Conceicao V,
Sun Y, Ahamad N, Saraiva LR, Selvaraj S and Singh BB: Calcium
signaling regulates autophagy and apoptosis. Cells. 10:21252021.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Dong X, Liang Q, Pan YZ, Wang X, Kuo YC,
Chiang WC, Zhang X, Williams NS, Rizo J, Levine B and De Brabander
JK: Novel Bcl-2 inhibitors selectively disrupt the
autophagy-specific Bcl-2-Beclin 1 protein-protein interaction. ACS
Med Chem Lett. 13:1510–1516. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wu YP, Zhang S, Xin YF, Gu LQ, Xu XZ,
Zhang CD and You ZQ: Evidence for the mechanism of Shenmai
injection antagonizing doxorubicin-induced cardiotoxicity.
Phytomedicine. 88:1535972021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li S, Li X, Liang H, Yu K, Zhai J, Xue M,
Luo Z, Zheng C and Zhang H: SARS-CoV-2 ORF7a blocked autophagy flux
by intervening in the fusion between autophagosome and lysosome to
promote viral infection and pathogenesis. J Med Virol.
95:e292002023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li S, Zhang H, Li W, Zhai J, Li X and
Zheng C: The role of SARS-CoV-2 ORF7a in autophagy flux disruption:
implications for viral infection and pathogenesis. Autophagy.
20:1449–1451. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kataoka T: Biological properties of the
BCL-2 family protein BCL-RAMBO, which regulates apoptosis,
mitochondrial fragmentation, and mitophagy. Front Cell Dev Biol.
10:10657022022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
King LE, Hohorst L and García-Sáez AJ:
Expanding roles of BCL-2 proteins in apoptosis execution and
beyond. J Cell Sci. 136:jcs2607902023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Iorio R, Celenza G and Petricca S:
Mitophagy: Molecular mechanisms, new concepts on parkin activation
and the emerging role of AMPK/ULK1 axis. Cells. 11:302021.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Moyzis AG, Lally NS, Liang W, Najor RH and
Gustafsson ÅB: Mcl-1 differentially regulates autophagy in response
to changes in energy status and mitochondrial damage. Cells.
11:14692022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li YY, Qin ZH and Sheng R: The multiple
roles of autophagy in neural function and diseases. Neurosci Bull.
40:363–382. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
El-Wetidy MS, Ahmad R, Rady I, Helal H,
Rady MI, Vaali-Mohammed MA, Al-Khayal K, Traiki TB and Abdulla MH:
Urolithin A induces cell cycle arrest and apoptosis by inhibiting
Bcl-2, increasing p53-p21 proteins and reactive oxygen species
production in colorectal cancer cells. Cell Stress Chaperones.
26:473–493. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Redza-Dutordoir M and Averill-Bates DA:
Interactions between reactive oxygen species and autophagy: Special
issue: Death mechanisms in cellular homeostasis. Biochim Biophys
Acta Mol Cell Res. 1868:1190412021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu
BW, Wang HS, Wang H and Jiang GM: Epigenetic and post-translational
modifications in autophagy: Biological functions and therapeutic
targets. Signal Transduct Target Ther. 8:322023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sun X, Cao S, Mao C, Sun F, Zhang X and
Song Y: Post-translational modifications of p65: State of the art.
Front Cell Dev Biol. 12:14175022024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hussar P: Apoptosis regulators bcl-2 and
caspase-3. Encyclopedia. 2:1624–1636. 2022. View Article : Google Scholar
|
|
32
|
Green DR: The mitochondrial pathway of
apoptosis part II: The BCL-2 protein family. Cold Spring Harb
Perspect Biol. 14:a0410462022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Iksen Witayateeraporn W, Hardianti B and
Pongrakhananon V: Comprehensive review of Bcl-2 family proteins in
cancer apoptosis: Therapeutic strategies and promising updates of
natural bioactive compounds and small molecules. Phytother Res.
38:2249–2275. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sharma A and Trivedi AK: Regulation of
apoptosis by E3 ubiquitin ligases in ubiquitin proteasome system.
Cell Biol Int. 44:721–734. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cui J and Placzek WJ: Post-transcriptional
regulation of anti-apoptotic BCL2 family members. Int J Mol Sci.
19:3082018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Bednarczyk M, Dąbrowska-Szeja N, Łętowski
D, Dzięgielewska-Gęsiak S, Waniczek D and Muc-Wierzgoń M:
Relationship between dietary nutrient intake and autophagy-related
genes in obese humans: A narrative review. Nutrients. 16:40032024.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xi H, Wang S, Wang B, Hong X, Liu X, Li M,
Shen R and Dong Q: The role of interaction between autophagy and
apoptosis in tumorigenesis (Review). Oncol Rep. 48:2082022.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jin C, Zhu M, Ye J, Song Z, Zheng C and
Chen W: Autophagy: Are amino acid signals dependent on the mTORC1
pathway or independent? Curr Issues Mol Biol. 46:8780–8793. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kma L and Baruah TJ: The interplay of ROS
and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl
Biochem. 69:248–264. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Patra S, Patil S, Klionsky DJ and Bhutia
SK: Lysosome signaling in cell survival and programmed cell death
for cellular homeostasis. J Cell Physiol. 238:287–305. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kench U, Sologova S, Smolyarchuk E,
Prassolov V and Spirin P: Pharmaceutical agents for targeting
autophagy and their applications in clinics. Pharmaceuticals
(Basel). 17:13552024. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Prasad V and Greber UF: The endoplasmic
reticulum unfolded protein response-homeostasis, cell death and
evolution in virus infections. FEMS Microbiol Rev. 45:fuab0162021.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Morris JL, Gillet G, Prudent J and
Popgeorgiev N: Bcl-2 family of proteins in the control of
mitochondrial calcium signalling: An old chap with new roles. Int J
Mol Sci. 22:37302021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Casas-Martinez JC, Samali A and McDonagh
B: Redox regulation of UPR signalling and mitochondrial ER contact
sites. Cell Mol Life Sci. 81:2502024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Naim S and Kaufmann T: The multifaceted
roles of the BCL-2 family member BOK. Front Cell Dev Biol.
8:5743382020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Larrañaga-SanMiguel A, Bengoa-Vergniory N
and Flores-Romero H: Crosstalk between mitochondria-ER contact
sites and the apoptotic machinery as a novel health meter. Trends
Cell Biol. 35:33–45. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhao S, Zhang Y, Lu X, Ding H, Han B, Song
X, Miao H, Cui X, Wei S, Liu W, et al: CDC20 regulates the cell
proliferation and radiosensitivity of P53 mutant HCC cells through
the Bcl-2/Bax pathway. Int J Biol Sci. 17:3608–3621. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mancuso S, Mattana M, Carlisi M, Santoro M
and Siragusa S: Effects of B-cell lymphoma on the immune system and
immune recovery after treatment: The paradigm of targeted therapy.
Int J Mol Sci. 23:33682022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zeng H, Kong X, Zhang H, Chen Y, Cai S,
Luo H and Chen P: Inhibiting DNA methylation alleviates cigarette
smoke extract-induced dysregulation of Bcl-2 and endothelial
apoptosis. Tob Induc Dis. 18:512020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Şimşek H, Akaras N, Gür C, Küçükler S and
Kandemir FM: Beneficial effects of Chrysin on Cadmium-induced
nephrotoxicity in rats: Modulating the levels of Nrf2/HO-1,
RAGE/NLRP3, and Caspase-3/Bax/Bcl-2 signaling pathways. Gene.
875:1475022023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gulia S, Chandra P and Da A: The prognosis
of cancer depends on the interplay of autophagy, apoptosis, and
anoikis within the tumor microenvironment. Cell Biochem Biophys.
81:621–658. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Fernandes MGF, Luo JXX, Cui QL, Perlman K,
Pernin F, Yaqubi M, Hall JA, Dudley R, Srour M, Couturier CP, et
al: Age-related injury responses of human oligodendrocytes to
metabolic insults: link to BCL-2 and autophagy pathways. Commun
Biol. 4:202021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Tarantini S, Balasubramanian P, Delfavero
J, Csipo T, Yabluchanskiy A, Kiss T, Nyúl-Tóth Á, Mukli P, Toth P,
Ahire C, et al: Treatment with the BCL-2/BCL-xL inhibitor senolytic
drug ABT263/Navitoclax improves functional hyperemia in aged mice.
Geroscience. 43:2427–2440. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kong ASY, Maran S and Loh HS: Navigating
the interplay between BCL-2 family proteins, apoptosis, and
autophagy in colorectal cancer. Advances in Cancer
Biology-Metastasis. 11:1001262024. View Article : Google Scholar
|
|
55
|
Yang D, He L, Ma S, Li S, Zhang Y, Hu C,
Huang J, Xu Z, Tang D and Chen Z: Pharmacological targeting of
Bcl-2 induces caspase 3-mediated cleavage of HDAC6 and regulates
the autophagy process in colorectal cancer. Int J Mol Sci.
24:66622023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Andreotti DZ, Silva JDN, Matumoto AM,
Orellana AM, De Mello PS and Kawamoto EM: Effects of physical
exercise on autophagy and apoptosis in aged brain: Human and animal
studies. Front Nutr. 7:942020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding
Y and Tang X: Beclin-1: A therapeutic target at the intersection of
autophagy, immunotherapy, and cancer treatment. Front Immunol.
15:15064262024. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chota A, George BP and Abrahamse H:
Interactions of multidomain pro-apoptotic and anti-apoptotic
proteins in cancer cell death. Oncotarget. 12:1615–1626. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Qian S, Wei Z, Yang W, Huang J, Yang Y and
Wang J: The role of BCL-2 family proteins in regulating apoptosis
and cancer therapy. Front Oncol. 12:9853632022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Saddam M, Paul SK, Habib MA, Fahim MA,
Mimi A, Islam S, Paul B and Helal MMU: Emerging biomarkers and
potential therapeutics of the BCL-2 protein family: The apoptotic
and anti-apoptotic context. Egypt J Med Hum Genet. 25:122024.
View Article : Google Scholar
|
|
61
|
Kapoor I, Bodo J, Hill BT, Hsi ED and
Almasan A: Targeting BCL-2 in B-cell malignancies and overcoming
therapeutic resistance. Cell Death Dis. 11:9412020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li Y, Guo M, Niu S, Shang M, Chang X, Sun
Z, Zhang R, Shen X and Xue Y: ROS and DRP1 interactions accelerate
the mitochondrial injury induced by polystyrene nanoplastics in
human liver HepG2 cells. Chem Biol Interact. 379:1105022023.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Jenner A, Peña-Blanco A, Salvador-Gallego
R, Ugarte-Uribe B, Zollo C, Ganief T, Bierlmeier J, Mund M, Lee JE,
Ries J, et al: DRP1 interacts directly with BAX to induce its
activation and apoptosis. EMBO J. 41:e1085872022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Radika PR, Chandrasekaran D, Mahila S and
Muninathan N: Role of reactive oxygen species and apoptotic genes
in bad obstetric history. Bulletin of Pure and Applied
Sciences-Zoology. 43:917–929. 2024.
|
|
65
|
Mustafa M, Ahmad R, Tantry IQ, Ahmad W,
Siddiqui S, Alam M, Abbas K, Moinuddin Hassan MI, Habib S and Islam
S: Apoptosis: A comprehensive overview of signaling pathways,
morphological changes, and physiological significance and
therapeutic implications. Cells. 13:18382024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hartman ML and Czyz M: BCL-G: 20 years of
research on a non-typical protein from the BCL-2 family. Cell Death
Differ. 30:1437–1446. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gupta R, Ambasta RK and Pravir Kumar:
Autophagy and apoptosis cascade: Which is more prominent in
neuronal death? Cell Mol Life Sci. 78:8001–8047. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sitthisuk P, Innajak S, Poorahong W,
Samosorn S, Dolsophon K and Watanapokasin R: Effect of acacia
concinna extract on apoptosis induction associated with endoplasmic
reticulum stress and modulated intracellular signaling pathway in
human colon HCT116 cancer cells. Nutrients. 16:37642024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kortam MA, Ali BM and Fathy N: The
deleterious effect of stress-induced depression on rat liver:
Protective role of resveratrol and dimethyl fumarate via inhibiting
the MAPK/ERK/JNK pathway. J Biochem Mol Toxicol. 35:e226272021.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Turk M, Tatli O, Alkan HF, Ozfiliz Kilbas
P, Alkurt G and Dinler Doganay G: Co-chaperone bag-1 plays a role
in the autophagy-dependent cell survival through Beclin 1
interaction. Molecules. 26:8542021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Abu-Baih RH, Abu-Baih DH, Abdel-Hafez SMN
and Fathy M: Activation of SIRT1/Nrf2/HO-1 and Beclin-1/AMPK/mTOR
autophagy pathways by eprosartan ameliorates testicular dysfunction
induced by testicular torsion in rats. Sci Rep. 14:125662024.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Rosa N, Ivanova H, Wagner LE II, Kale J,
La Rovere R, Welkenhuyzen K, Louros N, Karamanou S, Shabardina V,
Lemmens I, et al: Bcl-xL acts as an inhibitor of IP3R
channels, thereby antagonizing Ca2+-driven apoptosis.
Cell Death Differ. 29:788–805. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Cauwelier C, de Ridder I and Bultynck G:
Recent advances in canonical versus non-canonical
Ca2+-signaling-related anti-apoptotic Bcl-2 functions
and prospects for cancer treatment. Biochim Biophys Acta Mol Cell
Res. 1871:1197132024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sharma M: Interplay between autophagy and
apoptosis in cancer: Mechanisms and therapeutic implications. In
role of autophagy and reactive oxygen species in cancer treatment:
Principles and Current Strategies. 235–254. 2024. View Article : Google Scholar
|
|
75
|
Yu Y, Liu B, Li X, Lu D, Yang L, Chen L,
Li Y, Cheng L, Lv F, Zhang P, et al: ATF4/CEMIP/PKCα promotes
anoikis resistance by enhancing protective autophagy in prostate
cancer cells. Cell Death Dis. 13:462022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Usman RM, Razzaq F, Akbar A, Farooqui AA,
Iftikhar A, Latif A, Hassan H, Zhao J, Carew JS, Nawrocki ST and
Anwer F: Role and mechanism of autophagy-regulating factors in
tumorigenesis and drug resistance. Asia Pac J Clin Oncol.
17:193–208. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Nolte EM, Joubert AM, Lafanechère L and
Mercier AE: Radiosensitization of breast cancer cells with a
2-methoxyestradiol analogue affects DNA damage and repair signaling
in vitro. Int J Mol Sci. 24:35922023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bittencourt TL, da Silva Prata RB, de
Andrade Silva BJ, de Mattos Barbosa MG, Dalcolmo MP and Pinheiro
RO: Autophagy as a target for drug development of skin ınfection
caused by mycobacteria. Front Immunol. 12:6742412021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
O'Neill J, Manion M, Schwartz P and
Hockenbery DM: Promises and challenges of targeting Bcl-2
anti-apoptotic proteins for cancer therapy. Biochim Biophys Acta.
1705:43–51. 2004.PubMed/NCBI
|
|
80
|
Perini GF, Ribeiro GN, Pinto Neto JV,
Campos LT and Hamerschlak N: BCL-2 as therapeutic target for
hematological malignancies. J Hematol Oncol. 11:652018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Cao Q, Wu X, Zhang Q, Gong J, Chen Y, You
Y, Shen J, Qiang Y and Cao G: Mechanisms of action of the BCL-2
inhibitor venetoclax in multiple myeloma: A literature review.
Front Pharmacol. 14:12919202023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Vervloessem T, Kerkhofs M, La Rovere RM,
Sneyers F, Parys JB and Bultynck G: Bcl-2 inhibitors as anti-cancer
therapeutics: The impact of and on calcium signaling. Cell Calcium.
70:102–116. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Choi J, Bogenberger JM and Tibes R:
Targeting apoptosis in acute myeloid leukemia: Current status and
future directions of BCL-2 inhibition with venetoclax and beyond.
Targ Oncol. 15:147–162. 2020. View Article : Google Scholar
|
|
84
|
Puglisi M, Molife LR, de Jonge MJ, Khan
KH, Doorn L, van Forster MD, Blanco M, Gutierrez M, Franklin C,
Busman T, et al: A phase I study of the safety, pharmacokinetics
and efficacy of navitoclax plus docetaxel in patients with advanced
solid tumors. Future Oncol. 17:2747–2758. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Castelli G, Pelosi E and Testa U: Emerging
therapies for acute myelogenus leukemia patients targeting
apoptosis and mitochondrial metabolism. Cancers (Basel).
11:2602019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Blombery P, Anderson MA, Gong JN, Thijssen
R, Birkinshaw RW, Thompson ER, Teh CE, Nguyen T, Xu Z, Flensburg C,
et al: Acquisition of the recurrent Gly101Val mutation in BCL2
confers resistance to venetoclax in patients with progressive
chronic lymphocytic leukemia. Cancer Discov. 9:342–353. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wanford JJ, Hachani A and Odendall C:
Reprogramming of cell death pathways by bacterial effectors as a
widespread virulence strategy. Infect Immun. 90:e00614212022.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhang G, Wang J, Zhao Z, Xin T, Fan X,
Shen Q, Raheem A, Lee CR, Jiang H and Ding J: Regulated necrosis, a
proinflammatory cell death, potentially counteracts pathogenic
infections. Cell Death Dis. 13:6372022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yuan J and Ofengeim D: A guide to cell
death pathways. Nat Rev Mol Cell Biol. 25:379–395. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Gao J, Wang Q, Tang YD, Zhai J, Hu W and
Zheng C: When ferroptosis meets pathogenic infections. Trends
Microbiol. 31:468–479. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC,
Huang C and Fu L: Mitochondrial adaptation in cancer drug
resistance: Prevalence, mechanisms, and management. J Hematol
Oncol. 15:972022. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li Y, Lee HH, Jiang VC, Che Y, McIntosh J,
Jordan A, Vargas J, Zhang T, Yan F, Simmons ME, et al: Potentiation
of apoptosis in drug-resistant mantle cell lymphoma cells by MCL-1
inhibitor involves downregulation of inhibitor of apoptosis
proteins. Cell Death Dis. 14:7142023. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Valko Z, Megyesfalvi Z, Schwendenwein A,
Lang C, Paku S, Barany N, Ferencz B, Horvath-Rozsas A, Kovacs I,
Schlegl E, et al: Dual targeting of BCL-2 and MCL-1 in the presence
of BAX breaks venetoclax resistance in human small cell lung
cancer. Br J Cancer. 128:1850–1861. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Nwosu GO, Ross DM, Powell JA and Pitson
SM: Venetoclax therapy and emerging resistance mechanisms in acute
myeloid leukaemia. Cell Death Dis. 15:4132024. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Tatarata QZ, Wang Z and Konopleva M: BCL-2
inhibition in acute myeloid leukemia: Resistance and combinations.
Expert Rev Hematol. 17:935–946. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Cabrera-Serrano AJ, Sánchez-Maldonado JM,
González-Olmedo C, Carretero-Fernández M, Díaz-Beltrán L,
Gutiérrez-Bautista JF, García-Verdejo FJ, Gálvez-Montosa F,
López-López JA, García-Martín P, et al: Crosstalk between autophagy
and oxidative stress in hematological malignancies: Mechanisms,
implications, and therapeutic potential. Antioxidants. 14:2642025.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yoshida GJ: Therapeutic strategies of drug
repositioning targeting autophagy to induce cancer cell death: From
pathophysiology to treatment. J Hematol Oncol. 10:672017.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Grant S: Rational combination strategies
to enhance venetoclax activity and overcome resistance in
hematologic malignancies. Leuk Lymphoma. 59:1292–1299. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Xu Z, Han X, Ou D, Liu T, Li Z, Jiang G,
Liu J and Zhang J: Targeting PI3K/AKT/mTOR-mediated autophagy for
tumor therapy. Appl Microbiol Biotechnol. 104:575–587. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Yue X, Chen Q and He J: Combination
strategies to overcome resistance to the BCL2 inhibitor venetoclax
in hematologic malignancies. Cancer Cell Int. 20:5242020.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Al-Odat OS, Guirguis DA, Schmalbach NK,
Yao G, Budak-Alpdogan T, Jonnalagadda SC and Pandey MK: Autophagy
and apoptosis: current challenges of treatment and drug resistance
in multiple myeloma. Int J Mol Sci. 24:6442022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Mishra R, Zokaei Nikoo M, Veeraballi S and
Singh A: Venetoclax and hypomethylating agent combination in
myeloid malignancies: Mechanisms of synergy and challenges of
resistance. Int J Mol Sci. 25:4842023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Mowers EE, Sharifi MN and Macleod KF:
Autophagy in cancer metastasis. Oncogene. 36:1619–1630. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Xu J, Dong X, Huang DC, Xu P, Zhao Q and
Chen B: Current advances and future strategies for BCL-2
inhibitors: Potent weapons against cancers. Cancers (Basel).
15:49572023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Bazhanova ED and Kozlov AA: Role of
apoptosis-related proteins P53 and Bcl-2 in the pathogenesis of
nervous system diseases. J Evol Biochem Phys. 60:1475–1489. 2024.
View Article : Google Scholar
|
|
106
|
Singh R, Letai A and Sarosiek K:
Regulation of apoptosis in health and disease: The balancing act of
BCL-2 family proteins. Nat Rev Mol Cell Biol. 20:175–193. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li M, Wang D, He J, Chen L and Li H:
Bcl-XL: A multifunctional anti-apoptotic protein. Pharmacol Res.
151:1045472020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Murumulla L and Challa S: Role of
Apoptosis in Neurodegeneration: Therapeutic targets and strategies.
In apoptosis and human health: Understanding mechanistic and
therapeutic potential Singapore: Springer Nature Singapore; pp.
231–249. 2024
|
|
109
|
Perrotta C, Cattaneo MG, Molteni R and De
Palma C: Autophagy in the regulation of tissue differentiation and
homeostasis. Front Cell Dev Biol. 8:6029012020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Liu M, Jiang H and Momeni MR: Epigenetic
regulation of autophagy by non-coding RNAs and exosomal non-coding
RNAs in colorectal cancer: A narrative review. Int J Biol Macromol.
273((Pt 2)): 1327322024. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lindqvist LM, Heinlein M, Huang DC and
Vaux DL: Prosurvival Bcl-2 family members affect autophagy only
indirectly, by inhibiting Bax and Bak. Proc Natl Acad Sci USA.
111:8512–8517. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi
S, Xie H, Peng X, Yin W, Tao Y and Wang X: miRNA-based biomarkers,
therapies, and resistance in Cancer. Int J Biol Sci. 16:2628–2647.
2020. View Article : Google Scholar : PubMed/NCBI
|