|
1
|
Mukherjee PK, Mukherjee D, Maji AK, Rai S
and Heinrich M: The sacred lotus (Nelumbo
nucifera)-phytochemical and therapeutic profile. J Pharm
Pharmacol. 61:407–422. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sharma BR, Gautam LN, Adhikari D and Karki
R: A Comprehensive review on chemical profiling of nelumbo
nucifera: Potential for drug development. Phytother Res.
31:3–26. 2017. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhao SH, Jin D, Gu CJ and Lian FG:
Professor Tong Xiaolin's experience in using lotus leaf, gordon
euryale seed and lotus plumule for clearing and transforming
damp-heat symptoms. Jilin J Trad Chin Med. 41:336–338. 2021.(In
Chinese).
|
|
4
|
Huang XX, Xie Z, Xie MY and Li S:
Mechanism of qinggongtang against generalized anxiety disorder
based on Glu/GABA metabolic balance. Chin J Exp Trad Med Formulae.
30:28–35. 2024.(In Chinese).
|
|
5
|
Zheng ZJ, Zhu LZ, Song WC, Hu C, Chen S,
You P and Zhou Y: Pharmacological Research Progress of Nelumbinis
Plumula in the Treatment of Insomnia from the Traditional Chinese
Medicine Perspective ‘Heart Mind’. Shenzhen J Integrated Trad Chin
Western Med. 32:125–129. 2022.(In Chinese).
|
|
6
|
Wang Z, Li Y, Ma D, Zeng M, Wang Z, Qin F,
Chen J, Christian M and He Z: Alkaloids from lotus (Nelumbo
nucifera): Recent advances in biosynthesis, pharmacokinetics,
bioactivity, safety, and industrial applications. Crit Rev Food Sci
Nutr. 63:4867–4900. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bishayee A, Patel PA, Sharma P,
Thoutireddy S and Das N: Lotus (Nelumbo nucifera Gaertn.)
and its bioactive phytocompounds: A tribute to cancer prevention
and intervention. Cancers (Basel). 14:5292022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Marthandam Asokan S, Mariappan R,
Muthusamy S and Velmurugan BK: Pharmacological benefits of
neferine-A comprehensive review. Life Sci. 199:60–70. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bharathi Priya L, Huang CY, Hu RM,
Balasubramanian B and Baskaran R: An updated review on
pharmacological properties of neferine-A bisbenzylisoquinoline
alkaloid from Nelumbo nucifera. J Food Biochem.
45:e139862021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Arulselvan P, Fard MT, Tan WS, Gothai S,
Fakurazi S, Norhaizan ME and Kumar SS: Role of antioxidants and
natural products in inflammation. Oxid Med Cell Longev.
2016:52761302016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Priya LB, Baskaran R, Huang CY and Padma
VV: Neferine ameliorates cardiomyoblast apoptosis induced by
doxorubicin: Possible role in modulating NADPH oxidase/ROS-mediated
NFκB redox signaling cascade. Sci Rep. 7:122832017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jarczak D and Nierhaus A: Cytokine
Storm-definition, causes, and implications. Int J Mol Sci.
23:117402022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
van Loo G and Bertrand MJM: Death by TNF:
A road to inflammation. Nat Rev Immunol. 23:289–303. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pan Y, Cai B, Wang K, Wang S, Zhou S, Yu
X, Xu B and Chen L: Neferine enhances insulin sensitivity in
insulin resistant rats. J Ethnopharmacol. 124:98–102. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Baskaran R, Priya LB, Kalaiselvi P,
Poornima P, Huang CY and Padma VV: Neferine from Nelumbo
nucifera modulates oxidative stress and cytokines production
during hypoxia in human peripheral blood mononuclear cells. Biomed
Pharmacother. 93:730–736. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Min X, Guo Y, Zhou Y and Chen X:
Protection against dextran sulfate Sodium-induced ulcerative
colitis in mice by neferine, a natural product from Nelumbo
nucifera gaertn. Cell J. 22:523–531. 2021.PubMed/NCBI
|
|
17
|
Li J, Chou H, Li L, Li H and Cui Z: Wound
healing activity of neferine in experimental diabetic rats through
the inhibition of inflammatory cytokines and nrf-2 pathway. Artif
Cells Nanomed Biotechnol. 48:96–106. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rietschel ET, Kirikae T, Schade FU, Mamat
U, Schmidt G, Loppnow H, Ulmer AJ, Zähringer U, Seydel U, Di Padova
F, et al: Bacterial endotoxin: Molecular relationships of structure
to activity and function. FASEB J. 8:217–225. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wu X, Guo Y, Min X, Pei L and Chen X:
Neferine, a bisbenzylisoquinoline alkaloid, ameliorates dextran
sulfate Sodium-induced ulcerative colitis. Am J Chin Med.
46:1263–1279. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Guolan D, Lingli W, Wenyi H, Wei Z, Baowei
C and Sen B: Anti-inflammatory effects of neferine on LPS-induced
human endothelium via MAPK, and NF-κβ pathways. Pharmazie.
73:541–544. 2018.PubMed/NCBI
|
|
21
|
Liu XY, Xu HX, Li JK, Zhang D, Ma XH,
Huang LN, Lü JH and Wang XZ: Neferine Protects endothelial
glycocalyx via mitochondrial ROS in lipopolysaccharide-Induced
acute respiratory distress syndrome. Front Physiol. 9:1022018.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tang YS, Zhao YH, Zhong Y, Li XZ, Pu JX,
Luo YC and Zhou QL: Neferine inhibits LPS-ATP-induced endothelial
cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling
pathway. Inflamm Res. 68:727–738. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhong Y, He S, Huang K and Liang M:
Neferine suppresses vascular endothelial inflammation by inhibiting
the NF-κB signaling pathway. Arch Biochem Biophys. 696:1085952020.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li H, Chen W, Chen Y, Zhou Q, Xiao P, Tang
R and Xue J: Neferine attenuates acute kidney injury by inhibiting
NF-κB signaling and upregulating klotho expression. Front
Pharmacol. 10:11972019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li T, Zhai YX, Zheng T and Xu B: Neferine
exerts anti-inflammatory activity in BV-2 microglial cells and
protects mice with MPTP-induced Parkinson's disease by inhibiting
NF-κB activation. Mol Med Rep. 28:2352023. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Qi Z, Wang R, Liao R, Xue S and Wang Y:
Neferine ameliorates Sepsis-induced myocardial dysfunction through
Anti-apoptotic and antioxidative effects by regulating the
PI3K/AKT/mTOR signaling pathway. Front Pharmacol. 12:7062512021.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Savin IA, Zenkova MA and Sen'kova AV:
Pulmonary fibrosis as a result of acute lung inflammation:
Molecular mechanisms, relevant in vivo models, prognostic and
therapeutic approaches. Int J Mol Sci. 23:149592022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhao L, Wang X, Chang Q, Xu J, Huang Y,
Guo Q, Zhang S, Wang W, Chen X and Wang J: Neferine, a
bisbenzylisoquinline alkaloid attenuates bleomycin-induced
pulmonary fibrosis. Eur J Pharmacol. 627:304–312. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Niu CH, Wang Y, Liu JD, Wang JL and Xiao
JH: Protective effects of neferine on amiodarone-induced pulmonary
fibrosis in mice. Eur J Pharmacol. 714:112–119. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang Y, Wang S, Wang R, Li S and Yuan Y:
Neferine exerts antioxidant and Anti-inflammatory effects on carbon
Tetrachloride-induced liver fibrosis by inhibiting the MAPK and
NF-κB/IκBα pathways. Evid Based Complement Alternat Med.
2021:41360192021.PubMed/NCBI
|
|
31
|
Joffre J and Hellman J: Oxidative stress
and endothelial dysfunction in sepsis and acute inflammation.
Antioxid Redox Signal. 35:1291–1307. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hussain T, Tan B, Yin Y, Blachier F,
Tossou MCB and Rahu N: Oxidative stress and inflammation: What
polyphenols can do for us? Oxid Med Cell Longev. 2016:74327972016.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lalitha G, Poornima P, Archanah A and
Padma VV: Protective effect of neferine against
isoproterenol-induced cardiac toxicity. Cardiovasc Toxicol.
13:168–179. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Guan G, Han H, Yang Y, Jin Y, Wang X and
Liu X: Neferine prevented hyperglycemia-induced endothelial cell
apoptosis through suppressing ROS/Akt/NF-κB signal. Endocrine.
47:764–771. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Khan A, Bai H, Shu M, Chen M, Khan A and
Bai Z: Antioxidative and antiphotoaging activities of neferine upon
UV-A irradiation in human dermal fibroblasts. Biosci Rep.
38:BSR201814142018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Khan A, Bai H, Khan A and Bai Z: Neferine
prevents ultraviolet radiation-induced skin photoaging. Exp Ther
Med. 19:3189–3196. 2020.PubMed/NCBI
|
|
37
|
Nguyen T, Nioi P and Pickett CB: The
Nrf2-antioxidant response element signaling pathway and its
activation by oxidative stress. J Biol Chem. 284:13291–13295. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Baskaran R, Poornima P, Priya LB, Huang CY
and Padma VV: Neferine prevents autophagy induced by hypoxia
through activation of Akt/mTOR pathway and Nrf2 in muscle cells.
Biomed Pharmacother. 83:1407–1413. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bharathi Priya L, Baskaran R, Huang CY and
Vijaya Padma V: Neferine modulates IGF-1R/Nrf2 signaling in
doxorubicin treated H9c2 cardiomyoblasts. J Cell Biochem.
119:1441–1452. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu XD, Li H, Wang CZ, Zhao HD and Xiao P:
Mechanism of neferine in antioxidant stress. China J Modern Med.
28:31–36. 2018.
|
|
41
|
Wu C, Chen J, Yang R, Duan F, Li S and
Chen X: Mitochondrial protective effect of neferine through the
modulation of nuclear factor erythroid 2-related factor 2
signalling in ischaemic stroke. Br J Pharmacol. 176:400–415. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jiang XX, Zhang R and Wang HS: Neferine
mitigates angiotensin II-induced atrial fibrillation and fibrosis
via upregulation of Nrf2/HO-1 and inhibition of TGF-β/p-Smad2/3
pathways. Aging. 16:8630–8644. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sanz AB, Sanchez-Niño MD, Ramos AM, Moreno
JA, Santamaria B, Ruiz-Ortega M, Egido J and Ortiz A: NF-kappaB in
renal inflammation. J Am Soc Nephrol. 21:1254–1262. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yu H, Lin L, Zhang Z, Zhang H and Hu H:
Targeting NF-κB pathway for the therapy of diseases: Mechanism and
clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jung HA, Jin SE, Choi RJ, Kim DH, Kim YS,
Ryu JH, Kim DW, Son YK, Park JJ and Choi JS: Anti-amnesic activity
of neferine with antioxidant and anti-inflammatory capacities, as
well as inhibition of ChEs and BACE1. Life Sci. 87:420–430. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Chen S, Chu B, Chen Y, Cheng X, Guo D,
Chen L, Wang J, Li Z, Hong Z and Hong D: Neferine suppresses
osteoclast differentiation through suppressing NF-κB signal pathway
but not MAPKs and promote osteogenesis. J Cell Physiol.
234:22960–22971. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wu F, Wu Z, Ye Z, Niu G, Ma Z and Zhang P:
PLGA/BGP/Nef porous composite restrains osteoclasts by inhibiting
the NF-κB pathway, enhances IGF-1-mediated osteogenic
differentiation and promotes bone regeneration. J Biol Eng.
17:452023. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ni B, Huang X, Xi Y, Mao Z, Chu X, Zhang
R, Ma X and You H: Neferine inhibits expression of inflammatory
mediators and matrix degrading enzymes in IL-1β-treated rat
chondrocytes via suppressing MAPK and NF-κB signaling pathways.
Inflammation. 43:1209–1221. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Luo MC, Zhou SY, Feng DY, Xiao J, Li WY,
Xu CD, Wang HY and Zhou T: Runt-related transcription factor 1
(RUNX1) binds to p50 in macrophages and enhances TLR4-triggered
inflammation and septic shock. J Biol Chem. 291:22011–22020. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wang MY, Zhang SS, An MF, Xia YF, Fan MS,
Sun ZR, Zhang LJ, Zhao YL, Sheng J and Wang XJ: Neferine
ameliorates nonalcoholic steatohepatitis through regulating AMPK
pathway. Phytomedicine. 114:1547982023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xiong Y, Zhong J, Chen W, Li X, Liu H, Li
Y, Xiong W and Li H: Neferine alleviates acute kidney injury by
regulating the PPAR-α/NF-κB pathway. Clin Exp Nephrol. 28:969–987.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng
J, Li Y, Wang X and Zhao L: Inflammatory responses and
inflammation-associated diseases in organs. Oncotarget.
9:7204–7218. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kim EK and Choi EJ: Pathological roles of
MAPK signaling pathways in human diseases. Biochim Biophys Acta.
1802:396–405. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Pearson G, Robinson F, Beers Gibson T, Xu
BE, Karandikar M, Berman K and Cobb MH: Mitogen-activated protein
(MAP) kinase pathways: Regulation and physiological functions.
Endocr Rev. 22:153–183. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Liu X, Song X, Lu J, Chen X, Liang E, Liu
X, Zhang M, Zhang Y, Du Z and Zhao Y: Neferine inhibits
proliferation and collagen synthesis induced by high glucose in
cardiac fibroblasts and reduces cardiac fibrosis in diabetic mice.
Oncotarget. 7:61703–61715. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ozal SA, Gurlu V, Turkekul K, Guclu H and
Erdogan S: Neferine inhibits epidermal growth factor-induced
proliferation and migration of retinal pigment epithelial cells
through downregulating p38 MAPK and PI3K/AKT signalling. Cutan Ocul
Toxicol. 39:97–105. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhu T, Xiao X, Dong Y and Yuan C: Neferine
alleviates ovalbumin-induced asthma via MAPK signaling pathways in
mice. Allergol Immunopathol (Madr). 51:135–142. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Han Q, Li H, Zhao F, Gao J, Liu X and Ma
B: Auricularia auricula peptides nutritional supplementation delays
H2O2-induced senescence of hepG2 cells by modulation of MAPK/NF-κB
signaling pathways. Nutrients. 15:37312023. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yang CC, Hung YL, Ko WC, Tsai YJ, Chang
JF, Liang CW, Chang DC and Hung CF: Effect of neferine on
DNCB-induced atopic dermatitis in HaCaT cells and BALB/c Mice. Int
J Mol Sci. 22:82372021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chiu KM, Hung YL, Wang SJ, Tsai YJ, Wu NL,
Liang CW, Chang DC and Hung CF: Anti-allergic and Anti-inflammatory
effects of neferine on RBL-2H3 cells. Int J Mol Sci. 22:109942021.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang L and Hauenstein AV: The NLRP3
inflammasome: Mechanism of action, role in disease and therapies.
Mol Aspects Med. 76:1008892020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Coll RC, Schroder K and Pelegrín P: NLRP3
and pyroptosis blockers for treating inflammatory diseases. Trends
Pharmacol Sci. 43:653–668. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wu XL, Deng MZ, Gao ZJ, Dang YY, Li YC and
Li CW: Neferine alleviates memory and cognitive dysfunction in
diabetic mice through modulation of the NLRP3 inflammasome pathway
and alleviation of endoplasmic-reticulum stress. Int
Immunopharmacol. 84:1065592020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhu JJ, Yu BY, Huang XK, He MZ, Chen BW,
Chen TT, Fang HY, Chen SQ, Fu XQ, Li PJ, et al: Neferine protects
against Hypoxic-ischemic brain damage in neonatal rats by
suppressing NLRP3-mediated inflammasome activation. Oxid Med Cell
Longev. 2021:66549542021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zheng ZJ, Zhu LZ, Qiu H, Zheng WY, You PT,
Chen SH, Hu CL, Huang JR and Zhou YJ: Neferine inhibits BMECs
pyroptosis and maintains blood-brain barrier integrity in ischemic
stroke by triggering a cascade reaction of PGC-1α. Sci Rep.
14:144382024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lin TY, Hung CY, Chiu KM, Lee MY, Lu CW
and Wang SJ: Neferine, an alkaloid from lotus seed embryos, exerts
antiseizure and neuroprotective effects in a kainic Acid-induced
seizure model in rats. Int J Mol Sci. 23:41302022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Deretic V: Autophagy in inflammation,
infection, and immunometabolism. Immunity. 54:437–453. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Xu T, Singh D, Liu J, Li H, Peng S,
Rizzolo LJ and Wang SB: Neferine, is not inducer but blocker for
macroautophagic flux targeting on lysosome malfunction. Biochem
Biophys Res Commun. 495:1516–1521. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Sengking J, Oka C, Wicha P, Yawoot N,
Tocharus J, Chaichompoo W, Suksamrarn A and Tocharus C: Neferine
protects against brain damage in permanent cerebral ischemic rat
associated with autophagy suppression and AMPK/mTOR regulation. Mol
Neurobiol. 58:6304–6315. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Li H, Tang Y, Wen L, Kong X, Chen X, Liu
P, Zhou Z, Chen W, Xiao C, Xiao P and Xiao X: Neferine reduces
cisplatin-induced nephrotoxicity by enhancing autophagy via the
AMPK/mTOR signaling pathway. Biochem Biophys Res Commun.
484:694–701. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jones SA, Mills KH and Harris J: Autophagy
and inflammatory diseases. Immunol Cell Biol. 91:250–258. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang Z, Goronzy JJ and Weyand CM:
Autophagy in autoimmune disease. J Mol Med (Berl). 93:707–717.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li H, Gao L, Min J, Yang Y and Zhang R:
Neferine suppresses autophagy-induced inflammation, oxidative
stress and adipocyte differentiation in Graves' orbitopathy. J Cell
Mol Med. 25:1949–1957. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Jiang T, Harder B, Rojo de la Vega M, Wong
PK, Chapman E and Zhang DD: p62 links autophagy and Nrf2 signaling.
Free Radic Biol Med. 88:199–204. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Heldin CH, Miyazono K and ten Dijke P:
TGF-beta signalling from cell membrane to nucleus through SMAD
proteins. Nature. 390:465–471. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
76
|
Xu P, Liu J and Derynck R:
Post-translational regulation of TGF-β receptor and Smad signaling.
FEBS Lett. 586:1871–1884. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Dumbrava MG, Lacanlale JL, Rowan CJ and
Rosenblum ND: Transforming growth factor beta signaling functions
during mammalian kidney development. Pediatr Nephrol. 36:1663–1672.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Goumans MJ and Ten Dijke P: TGF-β
signaling in control of cardiovascular function. Cold Spring Harb
Perspect Biol. 10:a0222102018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Laudisi F, Stolfi C, Monteleone I and
Monteleone G: TGF-β1 signaling and Smad7 control T-cell responses
in health and immune-mediated disorders. Eur J Immunol.
53:e23504602023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Xia Y, Guo Y, Zhou J, Fan L, Xie J, Wang
Y, Du H and Ni X: Neferine mediated TGF-β/ERK signaling to inhibit
fibrosis in endometriosis. Am J Transl Res. 15:3240–3253.
2023.PubMed/NCBI
|
|
81
|
Liu CM, Shao Z, Chen X, Chen H, Su M,
Zhang Z, Wu Z, Zhang P, An L, Jiang Y and Ouyang AJ: Neferine
attenuates development of testosterone-induced benign prostatic
hyperplasia in mice by regulating androgen and TGF-β/Smad signaling
pathways. Saudi Pharm J. 31:1219–1228. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zeng W, Zhang X, Lu Y, Wen Y, Xie Q, Yang
X, He S, Guo Z, Li J, Shen A and Peng J: Neferine ameliorates
hypertensive vascular remodeling modulating multiple signaling
pathways in spontaneously hypertensive rats. Biomed Pharmacother.
158:1142032023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yu Y, Sun S, Wang S, Zhang Q, Li M, Lan F,
Li S and Liu C: Liensinine- and Neferine-induced cardiotoxicity in
primary neonatal rat cardiomyocytes and Human-induced pluripotent
stem Cell-derived cardiomyocytes. Int J Mol Sci. 17:1862016.
View Article : Google Scholar : PubMed/NCBI
|