1
|
Landis H, Murray T, Bolden S and Wingo PA:
Cancer statistics. Cancer J Clin. 49:8–31. 1999.
|
2
|
Wiggers T, Arends JW, Schutter B, Volovics
L and Bosman FT: A multivariate analysis of pathologic prognostic
indicators in large bowel cancer. Cancer. 61:386–389. 1988.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Wu XC, Chen VW, Steele B, Ruiz B, Fulton
J, Liu L, Carozza SE and Greenlee R: Subsite-specific incidence
rate and stage of disease in colorectal cancer by race, gender, and
age group. Cancer. 92:2547–2554. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Di Gregorio C, Benfatti P, Losi L,
Roncucci L, Rossi G, Ponti G, Marino M, Pedroni M, Scarselli A,
Roncari B and Ponz de Leon M: Incidence and survival of patients
with Dukes’ A (stages T1 and T2) colorectal carcinoma: a 15-year
population-based study. Int J Colorectal Dis. 20:147–154. 2005.
|
5
|
Cowland JB and Borregaard N: Molecular
characterization and pattern of tissue expression of the gene for
neutrophil gelatinase-associated lipocalin from humans. Genomics.
45:17–23. 1997. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bratt T: Lipocalins and cancer. Biochim
Biophys Acta. 1482:318–326. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang J, Goetz D, Li JY, Wang W, Mori K and
Setlik D: An iron delivery pathway mediated by a lipocalin. Mol
Cell. 10:1045–1056. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Goetz DH, Willie ST, Arme RS, Bratt T,
Borregaard N and Strong RK: Ligand preference inferred from the
structure of neutrophil gelatinase associated lipocalin.
Biochemistry. 39:1935–1941. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Goetz DH, Holmes MA, Borregaard N, Bluhm
ME, Raymond KN and Strong RK: The neutrophil lipocalin NGAL is a
bacteriostatic agent that interferes with siderophore-mediated iron
acquisition. Mol Cell. 10:1033–1043. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gwira JA, Wei F, Ishibe S, Ueland JM,
Barasch J and Cantley LG: Expression of neutrophil
associated-gelatinase lipocalin regulates epithelial morphogenesis
in vitro. J Biol Chem. 280:7875–7882. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bolignano D, Donato V, Lacquaniti A, et
al: Neutrophil gelatinase-associated lipocalin (NGAL) in human
neoplasias: a new protein enters the scene. Cancer Lett. 288:10–16.
2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hannai J, Mammoto T, Seth P, Mori K,
Karumanchi SA, Barasch J and Sukhatme VP: Lipocalin 2 diminishes
invasiveness and metastasis of Ras-transformed cells. J Biol Chem.
280:3641–3647. 2005.PubMed/NCBI
|
13
|
Bauer M, Eickhoff JC, Gould MN, Mundhenke
C, Maas N and Friedl A: Neutrophil gelatinase-associated lipocalin
(NGAL) is a predictor of poor prognosis in human primary breast
cancer. Breast Cancer Res Treat. 108:389–397. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Iannetti A, Pacifico F, Acquaviva R, et
al: The neutrophil gelatinase-associated lipocalin (NGAL), a
NF-kappaB-regulated gene, is a survival factor for thyroid
neoplastic cells. Proc Natl Acad Sci USA. 105:14058–14063. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Barresi V, Ieni A, Bolignano D, Magno C,
Buemi M and Barresi G: Neutrophil gelatinase-associated lipocalin
immunoexpression in renal tumors: correlation with histotype and
histological grade. Oncol Rep. 24:305–310. 2010. View Article : Google Scholar
|
16
|
Nielsen BS, Borregaard N, Bundgaard JR,
Timshel S, Sehested M and Kjeldsen L: Induction of NGAL synthesis
in epithelial cells of human colorectal neoplasia and inflammatory
bowel diseases. Gut. 38:414–420. 1996. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang XF, Zhang Y, Zhang XH, Zhou SM, Yang
GG, Wang OC, Guo GL, Yang GY and Hu XQ: Clinical significance of
Neutrophil gelatinase-associated lipocalin (NGAL) expression in
primary rectal cancer. BMC Cancer. 91:342009.PubMed/NCBI
|
18
|
Hu L, Hittelman W, Lu T, Ji P, Arlinghaus
R, Shmulevich I, Hamilton SR and Zhang W: NGAL decreases
E-cadherin-mediated cell-cell adhesion and increases cell motility
and invasion through Rac1 in colon carcinoma cells. Lab Invest.
89:531–548. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Friedl A, Stoesz SP, Buckley P and Gould
MN: Neutrophil gelatinase-associated lipocalin in normal and
neoplastic human tissues. Cell type-specific pattern of expression.
Histochem J. 31:433–441. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Moniaux N, Chakraborty S, Yalniz M, et al:
Early diagnosis of pancreatic cancer: neutrophil
gelatinase-associated lipocalin as a marker of pancreatic
intraepithelial neoplasia. Br J Cancer. 98:1540–1547. 2008.
View Article : Google Scholar
|
21
|
Kubben FJ, Sier CF, Hawinkels LJ, et al:
Clinical evidence for a protective role of lipocalin-2 against
MMP-9 autodegradation and the impact for gastric cancer. Eur J
Cancer. 43:1869–1876. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang H, Xu L, Xiao D, et al: Upregulation
of neutrophil gelatinase-associated lipocalin in oesophageal
squamous cell carcinoma: significant correlation with cell
differentiation and tumour invasion. J Clin Pathol. 60:555–561.
2007. View Article : Google Scholar
|
23
|
Devireddy LR, Gazin C, Zhu X and Green MR:
A cell-surface receptor for lipocalin 24p3 selectively mediates
apoptosis and iron uptake. Cell. 23:1293–1305. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Toyokuni S: Role of iron in
carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci.
100:9–16. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Le NTV and Richardson DN: The role of iron
in cell cycle progression and the proliferation of neoplastic
cells. Biochim Biophys Acta. 1603:31462002.
|
26
|
Fernandez CA, Yan L, Louis G, Yang J,
Kutok JL and Moses MA: The matrix metallo-proteinase-9/neutrophil
gelatinase associated lipocalin complex plays a role in breast
tumor growth and is present in the urine of breast cancer patients.
Clin Cancer Res. 11:5390–5395. 2005. View Article : Google Scholar
|
27
|
Lee S, Jilani SM, Nikolova GV, Carpizo D
and Iruela-Arispe M: Processing of VEGF-A by matrix
metalloproteinases regulates bioavailability and vascular
patterning in tumors. J Cell Biol. 169:681–691. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yan L, Borregaard N, Kjeldsen L and Moses
MA: The high molecular weight urinary matrix metalloproteinase
(MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil
gelatinase-associated lipocalin (NGAL). Modulation of MMP-9
activity by NGAL. J Biol Chem. 276:37258–37265. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Leng X, Ding T, Lin H, et al: Inhibition
of lipocalin 2 impairs breast tumorigenesis and metastasis. Cancer
Res. 69:8579–8784. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Buss JL, Greene BT, Turner J, Torti FM and
Torti SV: Iron chelators in cancer chemotherapy. Curr Top Med Chem.
4:1623–1635. 2004. View Article : Google Scholar
|
31
|
Jones DT, Trowbridge IS and Harris AL:
Effects of transferrin receptor blockade on cancer cell
proliferation and hypoxia-inducible factor function and their
differential regulation by ascorbate. Cancer Res. 66:2749–2756.
2006. View Article : Google Scholar : PubMed/NCBI
|