1
|
Kademani D, Bell RB, Schmidt BL,
Blanchaert R, Fernandes R, Lambert P and Tucker WM: Oral and
maxillofacial surgeons treating oral cancer: a preliminary report
from the American Association of Oral and Maxillofacial Surgeons
Task Force on Oral Cancer. J Oral Maxillofac Surg. 66:2151–2157.
2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bernier J and Cooper JS: Chemoradiation
after surgery for high-risk head and neck cancer patients: how
strong is the evidence? Oncologist. 10:215–224. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Carinci F, Lo Muzio L, Piattelli A, et al:
Genetic portrait of mild and severe lingual dysplasia. Oral Oncol.
41:365–374. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Choi P and Chen C: Genetic expression
profiles and biologic pathway alterations in head and neck squamous
cell carcinoma. Cancer. 104:1113–1128. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shiu MN and Chen TH: Impact of betel quid,
tobacco and alcohol on three-stage disease natural history of oral
leukoplakia and cancer: implication for prevention of oral cancer.
Eur J Cancer Prev. 13:39–45. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nagata M, Fujita H, Ida H, et al:
Identification of potential biomarkers of lymph node metastasis in
oral squamous cell carcinoma by cDNA microarray analysis. Int J
Cancer. 106:683–689. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kashiwazaki H, Hassan NM, Hamada J, et al:
Gene expression profile changes correlated with lymph node
metastasis in oral squamous cell carcinoma. Odontology. 96:38–43.
2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Arora S, Matta A, Shukla NK, Deo SV and
Ralhan R: Identification of differentially expressed genes in oral
squamous cell carcinoma. Mol Carcinog. 42:97–108. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Erdem NF, Carlson ER and Gerard DA:
Characterization of gene expression profiles of 3 different human
oral squamous cell carcinoma cell lines with different invasion and
metastatic capacities. J Oral Maxillofac Surg. 66:918–927. 2008.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Mendez E, Cheng C, Farwell DG, et al:
Transcriptional expression profiles of oral squamous cell
carcinomas. Cancer. 95:1482–1494. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gottschlich S, Ambrosch P, Cordes C,
Gorogh T, Schreiber S and Hasler R: Gene expression profiling of
head and neck squamous cell carcinoma using cDNA microarrays. Int J
Oncol. 29:605–613. 2006.PubMed/NCBI
|
12
|
Estilo CL, O-charoenrat P, Talbot S, et
al: Oral tongue cancer gene expression profiling: identification of
novel potential prognosticators by oligonucleotide microarray
analysis. BMC Cancer. 9:112009. View Article : Google Scholar
|
13
|
Salley JJ: Experimental carcinogenesis in
the cheek pouch of the Syrian hamster. J Dent Res. 33:253–262.
1954. View Article : Google Scholar : PubMed/NCBI
|
14
|
Feng L and Wang Z: Chemopreventive effect
of celecoxib in oral precancers and cancers. Laryngoscope.
116:1842–1845. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gimenez-Conti IB and Slaga TJ: The hamster
cheek pouch carcinogenesis model. J Cell Biochem Suppl. 17F:83–90.
1993. View Article : Google Scholar : PubMed/NCBI
|
16
|
World Health Organization. Report of a
meeting of investigators on the histological definition of
precancerous lesions. Geneva: World Health Organization; pp.
7311973
|
17
|
Stupack DG, Teitz T, Potter MD, et al:
Potentiation of neuroblastoma metastasis by loss of caspase-8.
Nature. 439:95–99. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
McKee AE and Thiele CJ: Targeting caspase
8 to reduce the formation of metastases in neuroblastoma. Expert
Opin Ther Targets. 10:703–708. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
DePamphilis ML: Cell cycle dependent
regulation of the origin recognition complex. Cell Cycle. 4:70–79.
2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tatsumi Y, Ohta S, Kimura H, Tsurimoto T
and Obuse C: The ORC1 cycle in human cells: I. cell cycle-regulated
oscillation of human ORC1. J Biol Chem. 278:41528–41534. 2003.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Burger JA and Kipps TJ: CXCR4: a key
receptor in the crosstalk between tumor cells and their
microenvironment. Blood. 107:1761–1767. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Vaday GG, Peehl DM, Kadam PA and Lawrence
DM: Expression of CCL5 (RANTES) and CCR5 in prostate cancer.
Prostate. 66:124–134. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fushimi T, Kojima A, Moore MA and Crystal
RG: Macrophage inflammatory protein 3alpha transgene attracts
dendritic cells to established murine tumors and suppresses tumor
growth. J Clin Invest. 105:1383–1393. 2000. View Article : Google Scholar
|
24
|
Rubie C, Frick VO, Wagner M, et al:
Chemokine expression in hepatocellular carcinoma versus colorectal
liver metastases. World J Gastroenterol. 12:6627–6633.
2006.PubMed/NCBI
|
25
|
Yu JL, May L, Lhotak V, et al: Oncogenic
events regulate tissue factor expression in colorectal cancer
cells: implications for tumor progression and angiogenesis. Blood.
105:1734–1741. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nakao S, Kuwano T, Ishibashi T, Kuwano M
and Ono M: Synergistic effect of TNF-alpha in soluble
VCAM-1-induced angiogenesis through alpha 4 integrins. J Immunol.
170:5704–5711. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gubala E, Wiench M, Oczko-Wojciechowska M,
et al: [Gene expression analysis by DNA microarray in papillary
thyroid cancer]. Endokrynol Pol. 56:752–757. 2005.
|
28
|
Koga K, Todaka T, Morioka M, et al:
Expression of angiopoietin- 2 in human glioma cells and its role
for angiogenesis. Cancer Res. 61:6248–6254. 2001.PubMed/NCBI
|
29
|
Zhang LL, He DL, Li X, Li L, Zhu GD, Zhang
D and Wang XY: Overexpression of coxsackie and adenovirus receptor
inhibit growth of human bladder cancer cell in vitro and in vivo.
Acta Pharmacol Sin. 28:895–900. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cao Y and Prescott SM: Many actions of
cyclooxygenase-2 in cellular dynamics and in cancer. J Cell
Physiol. 190:279–286. 2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Poff CD and Balazy M: Drugs that target
lipoxygenases and leukotrienes as emerging therapies for asthma and
cancer. Curr Drug Targets Inflamm Allergy. 3:19–33. 2004.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Brookman-Amissah N, Mackay AG and Swann
PF: Isolation and sequencing of the cDNA of a novel cytochrome P450
from rat oesophagus. Carcinogenesis. 22:155–160. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Konecny GE, Pegram MD, Venkatesan N, et
al: Activity of the dual kinase inhibitor lapatinib (GW572016)
against HER-2-overexpressing and trastuzumab-treated breast cancer
cells. Cancer Res. 66:1630–1639. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Suh HS, Kim MO and Lee SC: Inhibition of
granulocyte-macrophage colony-stimulating factor signaling and
microglial proliferation by anti-CD45RO: role of Hck tyrosine
kinase and phosphatidylinositol 3-kinase/Akt. J Immunol.
174:2712–2719. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Grosso S, Puissant A, Dufies M, et al:
Gene expression profiling of imatinib and PD166326-resistant CML
cell lines identifies Fyn as a gene associated with resistance to
BCR-ABL inhibitors. Mol Cancer Ther. 8:1924–1933. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Stephens LR, Anderson KE and Hawkins PT:
Src family kinases mediate receptor-stimulated, phosphoinositide
3-kinase-dependent, tyrosine phosphorylation of dual adaptor for
phosphotyrosine and 3-phosphoinositides-1 in endothelial and B cell
lines. J Biol Chem. 276:42767–42773. 2001. View Article : Google Scholar
|