1
|
Friedman H and Rapoport SM: Enzymes of the
red cell: a critical catalogue. Cellular and Molecular Biology of
Erythrocytes. Yoshikawa H and Rapoport SM: London University Park
Press; London: pp. 181–259. 1974
|
2
|
Zocchi E, Franco L, Guida L, Benatti U,
Bargellesi A, Malavasi F, Lee HC and De Flora A: A single protein
immunologically identified as CD38 displays NAD+
glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase
activities at the outer surface of human erythrocytes. Biochem
Biophys Res Commun. 196:1459–1465. 1993.PubMed/NCBI
|
3
|
Howard M, Grimaldi JC, Bazan JF, Lund FE,
Santos-Argumedo L, Parkhouse RM, Walseth TF and Lee HC: Formation
and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen
CD38. Science. 262:1056–1059. 1993. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gelman L, Deterre P, Gouy H, Boumsell L,
Debre P and Bismuth G: The lymphocyte surface antigen CD38 acts as
a nicotinamide adenine dinucleotide glycohydrolase in human T
lymphocytes. Eur J Immunol. 23:3361–3364. 1993. View Article : Google Scholar
|
5
|
Deaglio S, Aydin S, Vaisitti T, Bergui L
and Malavasi F: CD38 at the junction between prognostic marker and
therapeutic target. Trends Mol Med. 14:210–218. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Albeniz I, Demir Ö, Nurten R and Bermek E:
NAD glycohydrolase activities and ADP-ribose uptake in erythrocytes
from normal subject and cancer patients. Biosci Rep. 24:41–53.
2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Albeniz I, Demir Ö, Türker-Şener L,
Yalçıntepe L, Nurten R and Bermek E: Erythrocyte CD38 as a
prognostic marker in cancer. Hematology. 12:409–414. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu Z, Cumberland WG, Hultin LE, Prince
HE, Detels R and Giorgi JV: Elevated CD38 antigen expression on
CD8+ T cells is a stronger marker for the risk of
chronic HIV disease progression to AIDS and death in the
multicenter AIDS cohort study than CD4+ cell count,
soluble immune activation markers or combinations of HLA-DR and
CD38 expression. J Acquir Immune Defic Syndr Hum Retrovirol.
16:83–92. 1997.PubMed/NCBI
|
9
|
Dodge JT, Mitchell C and Hanahan DJ: The
preparation and chemical characteristics of the hemoglobin free
ghosts of human erythrocytes. Arch Biochem Biophys. 100:119–130.
1963. View Article : Google Scholar : PubMed/NCBI
|
10
|
Böyum A: Separation of leukocytes from
blood and bone marrow. Scand J Clin Lab Invest Suppl. 97:7–106.
1968.
|
11
|
Liebert M, Ballou B, Taylor RJ, Reiland JM
and Hakala TR: A method of membrane preparation for immunoassay. J
Immunol Methods. 85:97–104. 1985. View Article : Google Scholar : PubMed/NCBI
|
12
|
Davis LG, Dibner MD and Battey JF: Basic
Methods in Molecular Biology. Elsevier Science Publishing Co Inc;
New York: 1986
|
13
|
Kim H, Jacobson EL and Jacobson MK:
Synthesis and degradation of cyclic ADP-ribose by NAD
glycohydrolase. Science. 261:1330–1333. 1993. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yalçıntepe L, Albeniz I, Adın-Çınar S,
Tiryaki D, Bermek E, Graeff RM and Lee HC: Nuclear CD38 in retinoic
acid-induced HL-60 cells. Exp Cell Res. 303:14–21. 2005.PubMed/NCBI
|
15
|
Laemmli UK: Cleavage of structural
proteins during the assembly of the head of bacteriophage T4.
Nature. 227:680–685. 1970. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Gershoni JM and Palade GE: Protein
blotting: principles and applications. Anal Biochem. 131:1–15.
1983. View Article : Google Scholar : PubMed/NCBI
|
17
|
Nurten R, Üstündağ I, Sayhan N and Bermek
E: ADP-ribosylation of human proteins promoted by endogenous NAD
glycohydrolase activity. Biochem Biophys Res Commun. 200:450–458.
1994. View Article : Google Scholar : PubMed/NCBI
|
18
|
Watson JM, Sensintaffar JL, Berek JS and
Martinez-Maza O: Constitutive production of interleukin 6 by
ovarian cancer cell lines and by primary ovarian tumor cultures.
Cancer Res. 50:6959–6965. 1990.PubMed/NCBI
|
19
|
Siegall CB, Schwab G, Nordan RP,
FitzGerald DJ and Pastan I: Expression of the interleukin 6
receptor and interleukin 6 in prostate carcinoma cells. Cancer Res.
50:7786–7788. 1990.PubMed/NCBI
|
20
|
Bendre MS, Margulies AG, Walser B, Akel
NS, Bhattacharrya S, Skinner RA, Swain F, Ramani V, Mohammad KS,
Wessner LL, Martinez A, Guise TA, Chirgwin JM, Gaddy D and Suva LJ:
Tumor-derived interleukin-8 stimulates osteolysis independent of
the receptor activator of nuclear factor-kappaB ligand pathway.
Cancer Res. 65:11001–11009. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Blay JY, Negrier S, Combaret V, Attali S,
Goillot E, Merrouche Y, Mercatello A, Ravault A, Tourani JM and
Moskovtchenko JF: Serum level of interleukin 6 as a prognosis
factor in metastatic renal cell carcinoma. Cancer Res.
15:3317–3322. 1992.PubMed/NCBI
|
22
|
Wittke F, Hoffmann R, Buer J, Dallmann I,
Oevermann K, Sel S, Wandert T, Ganser A and Atzpodien J:
Interleukin 10 (IL-10): an immunosuppressive factor and independent
predictor in patients with metastatic renal cell carcinoma. Br J
Cancer. 79:1182–1184. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Michalaki V, Syrigos K, Charles P and
Waxman J: Serum levels of IL-6 and TNF-alpha correlate with
clinicopathological features and patient survival in patients with
prostate cancer. Br J Cancer. 90:2312–2316. 2004.PubMed/NCBI
|
24
|
Zhang GJ and Adachi I: Serum interleukin-6
levels correlate to tumor progression and prognosis in metastatic
breast carcinoma. Anticancer Res. 19:1427–1432. 1999.PubMed/NCBI
|
25
|
Macrì A, Versaci A, Loddo S, Scuderi G,
Travagliante M, Trimarchi G, Teti D and Famulari C: Serum levels of
interleukin 1beta, interleukin 8 and tumour necrosis factor alpha
as markers of gastric cancer. Biomarkers. 11:184–193.
2006.PubMed/NCBI
|
26
|
Kang BN, Tirimurugaan KG, Deshpande DA,
Amrani Y, Panettieri RA, Walseth TF and Kannan MS: Transcriptional
regulation of CD38 expression by tumor necrosis factor-alpha in
human airway smooth cells: role of NF-κB and sensitivity to
glucocorticoids. FASEB J. 20:1000–1002. 2006.
|
27
|
Lee HC: Cyclic ADP-ribose: a new member of
a super family of signalling cyclic nucleotides. Cell Signal.
6:591–600. 1994. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lande R, Urbani F, Di Carlo B, Sconocchia
G, Deaglio S, Funaro A, Malavasi F and Ausiello CM: CD38 ligation
plays a direct role in the induction of IL-1beta, IL-6, and IL-10
secretion in resting human monocytes. Cell Immunol. 220:30–38.
2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Damle RN, Wasil T, Fais F, Ghiotto F,
Valetto A, Allen SL, Bunchbinder A, Budman D, D ittmar K, Kolitz J,
Lichtman SM, Schulman P, Vincinquerra VP, Rai KR, Ferrarini M and
Chiorazzi N: IgV gene mutation status and CD38 expression as novel
prognostic indicators in chronic lymphocytic leukemia. Blood.
94:1840–1847. 1999.PubMed/NCBI
|
30
|
Matrai Z: CD38 as a prognostic marker in
CLL. Hematology. 10:39–46. 2005. View Article : Google Scholar : PubMed/NCBI
|