1
|
Shipitsin M, Campbell LL, Argani P, et al:
Molecular definition of breast tumor heterogeneity. Cancer Cell.
11:259–273. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ponti D, Costa A, Zaffaroni N, et al:
Isolation and in vitro propagation of tumorigenic breast
cancer cells with stem/progenitor cell properties. Cancer Res.
65:5506–5511. 2005.PubMed/NCBI
|
3
|
Deng SCG, Croce CM, Coukos G and Zhang L:
Mechanisms of microRNA deregulation in human cancer. Cell Cycle.
7:2643–2646. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Garzon R, Marcucci G and Croce CM:
Targeting microRNAs in cancer: rationale, strategies and
challenges. Nat Rev Drug Discov. 9:775–789. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Suh M-R, Lee Y, Kim JY, et al: Human
embryonic stem cells express a unique set of microRNAs. Dev Biol.
270:488–498. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Croce CM and Calin GA: miRNAs, cancer, and
stem cell division. Cell. 122:6–7. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bernstein EKS, Carmell MA, Murchison EP,
Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV and Hannon GJ:
Dicer is essential for mouse development. Nat Genet. 35:215–217.
2003. View
Article : Google Scholar
|
8
|
Kanellopoulou C, Muljo SA, Kung AL, et al:
Dicer-deficient mouse embryonic stem cells are defective in
differentiation and centromeric silencing. Genes Dev. 19:489–501.
2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu S, Goldstein RH, Scepansky EM and
Rosenblatt M: Inhibition of rho-associated kinase signaling
prevents breast cancer metastasis to human bone. Cancer Res.
69:8742–8751. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yu F, Yao H, Zhu P, et al: let-7 regulates
self renewal and tumorigenicity of breast cancer cells. Cell.
131:1109–1123. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu S, Suragani RN, Wang F, Han A, Zhao W,
Andrews NC and Chen JJ: The function of heme-regulated eIF2alpha
kinase in murine iron homeostasis and macrophage maturation. J Clin
Invest. 117:3296–3305. 2007. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Fillmore CM and Kuperwasser C: Human
breast cancer cell lines contain stem-like cells that self-renew,
give rise to phenotypically diverse progeny and survive
chemotherapy. Breast Cancer Res. 10:R252008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kuperwasser C, Dessain S, Bierbaum BE, et
al: A mouse model of human breast cancer metastasis to human bone.
Cancer Res. 65:6130–6138. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kang Y, Siegel PM, Shu W, et al: A
multigenic program mediating breast cancer metastasis to bone.
Cancer Cell. 3:537–549. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hinton A, Afrikanova I, Wilson M, et al: A
distinct microRNA signature for definitive endoderm derived from
human embryonic stem cells. Stem Cells and Dev. 19:797–807. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Lena AM, Shalom-Feuerstein R, Di Val Cervo
PR, et al: miR-203 represses 'stemness' by repressing [Delta]Np63.
Cell Death Differ. 15:1187–1195. 2008.
|
17
|
Bueno MJ, Pérez de Castro I, Gómez de
Cedrón M, et al: Genetic and epigenetic silencing of microRNA-203
enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell.
13:496–506. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shimono Y, Zabala M, Cho RW, et al:
Downregulation of miRNA-200c links breast cancer stem cells with
normal stem cells. Cell. 138:592–603. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pek JW, Lim AK and Kai T:
Drosophila maelstrom ensures proper germline stem cell
lineage differentiation by repressing microRNA-7. Dev Cell.
17:417–424. 2009. View Article : Google Scholar
|
20
|
Mallick B, Ghosh Z and Chakrabarti J:
MicroRNome analysis unravels the molecular basis of SARS infection
in bronchoalveolar stem cells. PLoS ONE. 4:e78372009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wellner U, Schubert J, Burk UC, et al: The
EMT-activator ZEB1 promotes tumorigenicity by repressing
stemness-inhibiting microRNAs. Nat Cell Biol. 11:1487–1495. 2009.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Ma Y-L, Zhang P, Wang F, et al: Human
embryonic stem cells and metastatic colorectal cancer cells shared
the common endogenous human microRNA-26b. J Cell Mol Med.
View Article : Google Scholar : (E-pub ahead of
print). Accessed September 10, 2010
|
23
|
Singh SK, Kagalwala MN, Parker-Thornburg
J, Adams H and Majumder S: REST maintains self-renewal and
pluripotency of embryonic stem cells. Nature. 453:223–227. 2008.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Schoolmeesters A, Eklund T, Leake D, et
al: Functional profiling reveals critical role for miRNA in
differentiation of human mesenchymal stem cells. PLoS ONE.
4:e56052009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ibarra I, Erlich Y, Muthuswamy SK,
Sachidanandam R and Hannon GJ: A role for microRNAs in maintenance
of mouse mammary epithelial progenitor cells. Genes Dev.
21:3238–3243. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rybak A, Fuchs H, Smirnova L, et al: A
feedback loop comprising lin-28 and let-7 controls pre-let-7
maturation during neural stem-cell commitment. Nat Cell Biol.
10:987–993. 2008. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Qian S, Ding JY, Xie R, et al: MicroRNA
expression profile of bronchioalveolar stem cells from mouse lung.
Biochem Biophys Res Commun. 377:668–673. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lakshmipathy U and Hart RP: Concise
review: microRNA expression in multipotent mesenchymal stromal
cells. Stem Cells. 26:356–363. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Godlewski J, Nowicki MO, Bronisz A, et al:
Targeting of the Bmi-1 oncogene/stem cell renewal factor by
microRNA-128 inhibits glioma proliferation and self-renewal. Cancer
Res. 68:9125–9130. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Luzi E, Marini F, Sala SC, Tognarini I,
Galli G and Brandi ML: Osteogenic differentiation of human adipose
tissue-derived stem cells is modulated by the miR-26a targeting of
the SMAD1 transcription factor. J Bone Miner Res. 23:287–295. 2008.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Foshay KM and Gallicano GI: miR-17 family
miRNAs are expressed during early mammalian development and
regulate stem cell differentiation. Dev Biol. 326:431–443. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Rogler CE, LeVoci L, Ader T, et al:
MicroRNA-23b cluster microRNAs regulate transforming growth
factor-beta/bone morphogenetic protein signaling and liver stem
cell differentiation by targeting Smads. Hepatology. 50:575–584.
2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lee S, Jung J-W, Park S-B, et al: Histone
deacetylase regulates high mobility group A2-targeting microRNAs in
human cord blood-derived multipotent stem cell aging. Cell Mol Life
Sci. 68:325–336. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sengupta S, Nie J, Wagner RJ, Yang C,
Stewart R and Thomson JA: MicroRNA 92b controls the G1/S checkpoint
gene p57 in human embryonic stem cells. Stem Cells. 27:1524–1528.
2009. View
Article : Google Scholar : PubMed/NCBI
|
35
|
Tzur G, Levy A, Meiri E, et al: MicroRNA
expression patterns and function in endodermal differentiation of
human embryonic stem cells. PLoS ONE. 3:e37262008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tsai Z-Y, Singh S, Yu S-L, et al:
Identification of microRNAs regulated by activin A in human
embryonic stem cells. J Cell Biochem. 109:93–102. 2010.PubMed/NCBI
|
37
|
Wagner W, Horn P, Castoldi M, et al:
Replicative senescence of mesenchymal stem cells: A continuous and
organized process. PLoS ONE. 3:e22132008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang K-H, Kao A-P, Singh S, et al:
Comparative expression profiles of mRNAs and microRNAs among human
mesenchymal stem cells derived from breast, face, and abdominal
adipose tissues. Kaohsiung J Med Sci. 26:113–122. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Han Y-C, Park CY, Bhagat G, et al:
microRNA-29a induces aberrant self-renewal capacity in
hematopoietic progenitors, biased myeloid development, and acute
myeloid leukemia. J Exp Med. 207:475–489. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Shi L, Zhang J, Pan T, et al: MiR-125b is
critical for the suppression of human U251 glioma stem cell
proliferation. Brain Res. 1312:120–126. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Tarantino C, Paolella G, Cozzuto L, et al:
miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic
stem cells. FASEB J. 24:3255–3263. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Decembrini S, Bressan D, Vignali R, et al:
MicroRNAs couple cell fate and developmental timing in retina. Proc
Natl Acad Sci USA. 106:21179–21184
|
43
|
Poliseno L, Tuccoli A, Mariani L, et al:
MicroRNAs modulate the angiogenic properties of HUVECs. Blood.
108:3068–3071. 2006. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wu L and Belasco JG: Micro-RNA regulation
of the mammalian lin-28 gene during neuronal differentiation of
embryonal carcinoma cells. Mol Cell Biol. 25:9198–9208. 2005.
View Article : Google Scholar : PubMed/NCBI
|
45
|
McPherson JP, Tamblyn L, Elia A, et al:
Lats2/Kpm is required for embryonic development, proliferation
control and genomic integrity. Embo J. 23:3677–3688. 2004.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Savarese F, Dávila A, Nechanitzky R, et
al: Satb1 and Satb2 regulate embryonic stem cell differentiation
and Nanog expression. Genes Dev. 23:2625–2638. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zheng H, Ying H, Wiedemeyer R, et al:
PLAGL2 regulates Wnt signaling to impede differentiation in neural
stem cells and gliomas. Cancer Cell. 17:497–509. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Reinhart BJ, Slack FJ, Basson M, et al:
The 21-nucleotide let-7 RNA regulates developmental timing in
Caenorhabditis elegans. Nature. 403:901–906. 2000.
View Article : Google Scholar : PubMed/NCBI
|