1
|
Van Meir EG, Hadjipanayis CG, Norden AD,
Shu HK, Wen PY and Olson JJ: Exciting new advances in
neuro-oncology: the avenue to a cure for malignant glioma. CA
Cancer J Clin. 60:166–193. 2010.PubMed/NCBI
|
2
|
Mardis ER, Ding L, Dooling DJ, et al:
Recurring mutations found by sequencing an acute myeloid leukemia
genome. N Engl J Med. 361:1058–1066. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Parsons DW, Jones S, Zhang X, et al: An
integrated genomic analysis of human glioblastoma multiforme.
Science. 321:1807–1812. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kloosterhof NK, Bralten LB, Dubbink HJ,
French PJ and van den Bent MJ: Isocitrate dehydrogenase-1
mutations: a fundamentally new understanding of diffuse glioma?
Lancet Oncol. 12:83–91. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Marcucci G, Maharry K, Wu YZ, et al: IDH1
and IDH2 gene mutations identify novel molecular subsets within de
novo cytogenetically normal acute myeloid leukemia: a Cancer and
Leukemia Group B study. J Clin Oncol. 28:2348–2355. 2010.
View Article : Google Scholar
|
6
|
Paschka P, Schlenk RF, Gaidzik VI, et al:
IDH1 and IDH2 mutations are frequent genetic alterations in acute
myeloid leukemia and confer adverse prognosis in cytogenetically
normal acute myeloid leukemia with NPM1 mutation without FLT3
internal tandem duplication. J Clin Oncol. 28:3636–3643. 2010.
View Article : Google Scholar
|
7
|
Tefferi A, Lasho TL, Abdel-Wahab O, et al:
IDH1 and IDH2 mutation studies in 1473 patients with chronic-,
fibrotic- or blast-phase essential thrombocythemia, polycythemia
vera or myelofibrosis. Leukemia. 24:1302–1309. 2010. View Article : Google Scholar
|
8
|
Ward PS, Patel J, Wise DR, et al: The
common feature of leukemia-associated IDH1 and IDH2 mutations is a
neomorphic enzyme activity converting alpha-ketoglutarate to
2-hydroxyglutarate. Cancer Cell. 17:225–234. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yan H, Parsons DW, Jin G, et al: IDH1 and
IDH2 mutations in gliomas. N Engl J Med. 360:765–773. 2009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ducray F, El-Hallani S and Idbaih A:
Diagnostic and prognostic markers in gliomas. Curr Opin Oncol.
21:537–542. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Schiff D and Purow BW: Neuro-oncology:
isocitrate dehydrogenase mutations in low-grade gliomas. Nat Rev
Neurol. 5:303–304. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dang L, White DW, Gross S, et al:
Cancer-associated IDH1 mutations produce 2-hydroxyglutarate.
Nature. 462:739–744. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhao S, Lin Y, Xu W, et al: Glioma-derived
mutations in IDH1 dominantly inhibit IDH1 catalytic activity and
induce HIF-1alpha. Science. 324:261–265. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu W, Yang H, Liu Y, et al: Oncometabolite
2-hydroxyglutarate is a competitive inhibitor of
alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 19:17–30.
2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Garber K: Oncometabolite? IDH1 discoveries
raise possibility of new metabolism targets in brain cancers and
leukemia. J Natl Cancer Inst. 102:926–928. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhu J, Zuo J, Xu Q, Wang X, Wang Z and
Zhou D: Isocitrate dehydrogenase mutations may be a protective
mechanism in glioma patients. Med Hypotheses. 76:602–603. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Delhommeau F, Dupont S, Della VV, et al:
Mutation in TET2 in myeloid cancers. N Engl J Med. 360:2289–2301.
2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Langemeijer SM, Kuiper RP, Berends M, et
al: Acquired mutations in TET2 are common in myelodysplastic
syndromes. Nat Genet. 41:838–842. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tefferi A, Levine RL, Lim KH, et al:
Frequent TET2 mutations in systemic mastocytosis: clinical,
KITD816V and FIP1L1-PDGFRA correlates. Leukemia. 23:900–904. 2009.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Tefferi A, Pardanani A, Lim KH, et al:
TET2 mutations and their clinical correlates in polycythemia vera,
essential thrombocythemia and myelofibrosis. Leukemia. 23:905–911.
2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Abdel-Wahab O, Mullally A, Hedvat C, et
al: Genetic characterization of TET1, TET2, and TET3 alterations in
myeloid malignancies. Blood. 114:144–147. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ito S, D’Alessio AC, Taranova OV, Hong K,
Sowers LC and Zhang Y: Role of Tet proteins in 5mC to 5hmC
conversion, ES-cell self-renewal and inner cell mass specification.
Nature. 466:1129–1133. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tahiliani M, Koh KP, Shen Y, et al:
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in
mammalian DNA by MLL partner TET1. Science. 324:930–905. 2009.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Ko M, Huang Y, Jankowska AM, et al:
Impaired hydroxylation of 5-methylcytosine in myeloid cancers with
mutant TET2. Nature. 468:839–843. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jankowska AM, Szpurka H, Tiu RV, et al:
Loss of heterozygosity 4q24 and TET2 mutations associated with
myelodysplastic/myeloproliferative neoplasms. Blood. 113:6403–6410.
2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Reitman ZJ and Yan H: Isocitrate
dehydrogenase 1 and 2 mutations in cancer: alterations at a
crossroads of cellular metabolism. J Natl Cancer Inst. 102:932–941.
2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tefferi A: Novel mutations and their
functional and clinical relevance in myeloproliferative neoplasms:
JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 24:1128–1138.
2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chou WC, Hou HA, Chen CY, et al: Distinct
clinical and biologic characteristics in adult acute myeloid
leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood.
115:2749–2754. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tefferi A, Lim KH, Abdel-Wahab O, et al:
Detection of mutant TET2 in myeloid malignancies other than
myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia.
23:1343–1345. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Figueroa ME, Abdel-Wahab O, Lu C, et al:
Leukemic IDH1 and IDH2 mutations result in a hypermethylation
phenotype, disrupt TET2 function, and impair hematopoietic
differentiation. Cancer Cell. 18:553–567. 2010. View Article : Google Scholar
|
31
|
Watanabe T, Nobusawa S, Kleihues P and
Ohgaki H: IDH1 mutations are early events in the development of
astrocytomas and oligodendrogliomas. Am J Pathol. 174:1149–1153.
2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ichimura K, Pearson DM, Kocialkowski S, et
al: IDH1 mutations are present in the majority of common adult
gliomas but rare in primary glioblastomas. Neuro Oncol. 11:341–347.
2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Labussiere M, Idbaih A, Wang XW, et al:
All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2.
Neurology. 74:1886–1890. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sanson M, Marie Y, Paris S, et al:
Isocitrate dehydrogenase 1 codon 132 mutation is an important
prognostic biomarker in gliomas. J Clin Oncol. 27:4150–4154. 2009.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Korshunov A, Meyer J, Capper D, et al:
Combined molecular analysis of BRAF and IDH1 distinguishes
pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol.
118:401–405. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Balss J, Meyer J, Mueller W, Korshunov A,
Hartmann C and von Deimling A: Analysis of the IDH1 codon 132
mutation in brain tumors. Acta Neuropathol. 116:597–602. 2008.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Ohgaki H and Kleihues P: Genetic
alterations and signaling pathways in the evolution of gliomas.
Cancer Sci. 100:2235–2241. 2009. View Article : Google Scholar : PubMed/NCBI
|