1
|
Penman S, Rosbash M and Penman M:
Messenger and heterogeneous nuclear RNA in HeLa cells: differential
inhibition by cordycepin. Proc Natl Acad Sci USA. 67:1878–1885.
1970. View Article : Google Scholar : PubMed/NCBI
|
2
|
Müller WE, Seibert G, Beyer R, Breter HJ,
Maidhof A and Zahn RK: Effect of cordycepin on nucleic acid
metabolism in L5178Y cells and on nucleic acid-synthesizing enzyme
systems. Cancer Res. 37:3824–3833. 1977.PubMed/NCBI
|
3
|
Wong YY, Moon A, Duffin R,
Barthet-Barateig A, Meijer HA, Clemens MJ and de Moor CH:
Cordycepin inhibits protein synthesis and cell adhesion through
effects on signal transduction. J Biol Chem. 285:2610–2621. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Chang W, Lim S, Song H, Song BW, Kim HJ,
Cha MJ, Sung JM, Kim TW and Hwang K: Cordycepin inhibits vascular
smooth muscle cell proliferation. Eur J Pharmacol. 597:64–69. 2008.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen LS, Du-Cuny L, Vethantham V, Hawke
DH, Manley JL, Zhang S and Gandhi V: Chain termination and
inhibition of mammalian poly(A) polymerase by modified ATP
analogues. Biochem Pharmacol. 79:669–677. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nakamura K, Konoha K, Yoshikawa N,
Yamaguchi Y, Kagota S, Shinozuka K and Kunitomo M: Effect of
cordycepin (3′-deoxyadenosine) on hematogenic lung metastatic model
mice. In vivo. 19:137–141. 2005.
|
7
|
Nakamura K, Yoshikawa N, Yamaguchi Y,
Kagota S, Shinozuka K and Kunitomo M: Antitumor effect of
cordycepin (3′-deoxyadenosine) on mouse melanoma and lung carcinoma
cells involves adenosine A3 receptor stimulation. Anticancer Res.
26:43–47. 2006.
|
8
|
Wu WC, Hsiao JR, Lian YY, Lin CY and Huang
BM: The apoptotic effect of cordycepin on human OEC-M1 oral cancer
cell line. Cancer Chemother Pharmacol. 60:103–111. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen LS, Stellrecht CM and Gandhi V:
RNA-directed agent, cordycepin, induces cell death in multiple
myeloma cells. Br J Haematol. 140:682–691. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Scorilas A, Talieri M, Ardavanis A,
Courtis N, Dimitriadis E, Yotis J, Tsiapalis CM and Trangas T:
Polyadenylate polymerase enzymatic activity in mammary tumor
cytosols: a new independent prognostic marker in primary breast
cancer. Cancer Res. 60:5427–5433. 2000.
|
11
|
Nazeer FI, Devany E, Mohammed S, Fonseca
D, Akukwe B, Taveras C and Kleiman FE: p53 inhibits mRNA 3′
processing through its interaction with the CstF/BARD1 complex.
Oncogene. 30:3073–3083. 2011.
|
12
|
Cevher MA, Zhang X, Fernandez S, Kim S,
Baquero J, Nilsson P, Lee S, Virtanen A and Kleiman FE: Nuclear
deadenylation/polyadenylation factors regulate 3′ processing in
response to DNA damage. EMBO J. 29:1674–1687. 2010.PubMed/NCBI
|
13
|
Mirkin N, Fonseca D, Mohammed S, Cevher
MA, Manley JL and Kleiman FE: The 3′ processing factor CstF
functions in the DNA repair response. Nucleic Acids Res.
36:1792–1804. 2008.
|
14
|
Jiricny J: The multifaceted
mismatch-repair system. Nat Rev Mol Cell Biol. 7:335–346. 2006.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Peltomäki P: Role of DNA mismatch repair
defects in the pathogenesis of human cancer. J Clin Oncol.
21:1174–1179. 2003.PubMed/NCBI
|
16
|
Fedier A and Fink D: Mutations in DNA
mismatch repair genes: Implications for DNA damage signaling and
drug sensitivity. Int J Oncol. 24:1039–1047. 2004.PubMed/NCBI
|
17
|
Gartel AL and Radhakrishnan SK: Lost in
transcription: p21 repression, mechanisms, and consequences. Cancer
Res. 65:3980–3985. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lee SJ, Moon GS, Jung KH, Kim WJ and Moon
SK: c-Jun N-terminal kinase 1 is required for cordycepin-mediated
induction of G2/M cell-cycle arrest via p21WAF1 expression in human
colon cancer cells. Food Chem Toxicol. 48:277–283. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Danial NN and Korsmeyer SJ: Cell death:
critical control points. Cell. 116:205–219. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Riedl SJ and Salvesen GS: The apoptosome:
signalling platform of cell death. Nat Rev Mol Cell Biol.
8:405–413. 2007. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Jeong JW, Jin CY, Park C, Hong SH, Kim GY,
Jeong YK, Lee JD, Yoo YH and Choi YH: Induction of apoptosis by
cordycepin via reactive oxygen species generation in human leukemia
cells. Toxicol In Vitro. 25:817–824. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Thomadaki H, Scorilas A, Tsiapalis CM and
Havredaki M: The role of cordycepin in cancer treatment via
induction or inhibition of apoptosis: implication of
polyadenylation in a cell type specific manner. Cancer Chemother
Pharmacol. 61:251–265. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lui JC, Wong JW, Suen YK, Kwok TT, Fung KP
and Kong SK: Cordycepin induced eryptosis in mouse erythrocytes
through a Ca2+-dependent pathway without caspase-3
activation. Arch Toxicol. 81:859–865. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nehmé A, Baskaran R, Nebel S, Fink D,
Howell SB, Wang JY and Christen RD: Induction of JNK and c-Abl
signalling by cisplatin and oxaliplatin in mismatch
repair-proficient and -deficient cells. Br J Cancer. 79:1104–1110.
1999.PubMed/NCBI
|
25
|
Wu Q and Vasquez KM: Human MLH1 protein
participates in genomic damage checkpoint signaling in response to
DNA interstrand crosslinks, while MSH2 functions in DNA repair.
PLoS Genet. 4:1–10. 2008.PubMed/NCBI
|
26
|
Yoshioka K, Yoshioka Y and Hsieh P: ATR
kinase activation mediated by MutSalpha and MutLalpha in response
to cytotoxic O6-methylguanine adducts. Mol Cell. 22:501–510. 2006.
View Article : Google Scholar : PubMed/NCBI
|