1
|
Diehl AK: Epidemiology of gallbladder
cancer: a synthesis of recent data. J Natl Cancer Inst.
65:1209–1214. 1980.PubMed/NCBI
|
2
|
Randi G, Franceschi S and La Vecchia C:
Gallbladder cancer worldwide: geographical distribution and risk
factors. Int J Cancer. 118:1591–1602. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Miller G and Jarnagin WR: Gallbladder
carcinoma. Euro J Surg Oncol. 34:306–312. 2008. View Article : Google Scholar
|
4
|
Gourgiotis S, Kocher HM, Solaini L,
Yarollahi A, Tsiambas E and Salemis NS: Gallbladder cancer. Am J
Surg. 196:252–264. 2008. View Article : Google Scholar
|
5
|
Balachandran P, Agarwal S, Krishnani N, et
al: Predictors of long-term survival in patients with gallbladder
cancer. J Gastrointest Surg. 10:848–854. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Varga M, Obrist P, Schneeberger S, et al:
Overexpression of epithelial cell adhesion molecule antigen in
gallbladder carcinoma is an independent marker for poor survival.
Clin Cancer Res. 10:3131–3136. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Park JS, Yoon DS, Kim KS, et al: Analysis
of prognostic factors after curative resection for gallbladder
carcinoma. Korean J Gastroenterol. 48:32–36. 2006.(In Korean).
|
8
|
Malka D, Boige V, Dromain C, Debaere T,
Pocard M and Ducreux M: Biliary tract neoplasms: update 2003. Curr
Opin Oncol. 16:364–371. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Roa I, de Aretxabala X, Araya JC, et al:
Morphological prognostic elements in gallbladder cancer. Rev Med
Chil. 130:387–395. 2002.(In Spanish).
|
10
|
Roa I, Melo A, Roa J, Araya J, Villaseca M
and de Aretxabala X: P53 gene mutation in gallbladder cancer. Rev
Med Chil. 128:251–258. 2000.(In Spanish).
|
11
|
Itoi T, Watanabe H, Ajioka Y, et al: APC,
K ras codon 12 mutations and p53 gene expression in carcinoma and
adenoma of the gall bladder suggest two genetic pathways in gall
bladder carcinogenesis. Pathol Int. 46:333–340. 1996. View Article : Google Scholar : PubMed/NCBI
|
12
|
Puhalla H, Wrba F, Kandioler D, et al:
Expression of p21(Wafl/Cip1), p57(Kip2) and HER2/neu in patients
with gall-bladder cancer. Anticancer Res. 27:1679–1684.
2007.PubMed/NCBI
|
13
|
Shi YZ, Hui AM, Li X, Takayama T and
Makuuchi M: Overexpression of retinoblastoma protein predicts
decreased survival and correlates with loss of p16INK4 protein in
gall-bladder carcinomas. Clin Cancer Res. 6:4096–4100.
2000.PubMed/NCBI
|
14
|
Zhi YH, Liu RS, Song MM, et al:
Cyclooxygenase-2 promotes angiogenesis by increasing vascular
endothelial growth factor and predicts prognosis in gallbladder
carcinoma. World J Gastroenterol. 11:3724–3728. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Giatromanolaki A, Sivridis E, Simopoulos
C, et al: Hypoxia inducible factors 1alpha and 2alpha are
associated with VEGF expression and angiogenesis in gallbladder
carcinomas. J Surg Oncol. 94:242–247. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim YW, Huh SH, Park YK, Yoon TY, Lee SM
and Hong SH: Expression of the c-erb-B2 and p53 protein in
gallbladder carcinomas. Oncol Rep. 8:1127–1132. 2001.PubMed/NCBI
|
17
|
Zhang M, Pan JW, Ren TR, Zhu YF, Han YJ
and Kühnel W: Correlated expression of inducible nitric oxide
synthase and P53, Bax in benign and malignant diseased gallbladder.
Ann Anat. 185:549–554. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Roa I, Ibacache G, Melo A, et al:
Subserous gallbladder carcinoma: expression of cadherine-catenine
complex. Rev Med Chil. 130:1349–1357. 2002.(In Spanish).
|
19
|
Chang HJ, Jee CD and Kim WH: Mutation and
altered expression of beta-catenin during gallbladder
carcinogenesis. Am J Surg Pathol. 26:758–766. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Choi YL, Xuan YH, Shin YK, et al: An
immunohistochemical study of the expression of adhesion molecules
in gallbladder lesions. J Histochem Cytochem. 52:591–601. 2004.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Choi SY, Jo YS, Huang SM, et al: L1 cell
adhesion molecule as a novel independent poor prognostic factor in
gallbladder carcinoma. Hum Pathol. 42:1476–1483. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Connell P, Ballinger CA, Jiang J, et al:
The co-chaperone CHIP regulates protein triage decisions mediated
by heat-shock proteins. Nat Cell Biol. 3:93–96. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Demand J, Alberti S, Patterson C and
Höhfeld J: Cooperation of a ubiquitin domain protein and an E3
ubiquitin ligase during chaperone/proteasome coupling. Curr Biol.
11:1569–1577. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhou P, Fernandes N, Dodge IL, et al:
ErbB2 degradation mediated by the co-chaperone protein CHIP. J Biol
Chem. 278:13829–13837. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Luo W, Zhong J, Chang R, Hu H, Pandey A
and Semenza GL: Hsp70 and CHIP selectively mediate ubiquitination
and degradation of hypoxia-inducible factor (HIF)-1α but not
HIF-2α. J Biol Chem. 285:3651–3663. 2010.PubMed/NCBI
|
26
|
Jang KW, Lee JE, Kim SY, et al: The
C-terminus of Hsp70-interacting protein promotes Met receptor
degradation. J Thorac Oncol. 6:679–687. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Esser C, Scheffner M and Höhfeld J: The
chaperone-associated ubiquitin ligase CHIP is able to target p53
for proteasomal degradation. J Biol Chem. 280:27443–27448. 2005.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Tripathi V, Ali A, Bhat R and Pati U: CHIP
chaperones wild type p53 tumor suppressor protein. J Biol Chem.
282:28441–28454. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
McDonough H, Charles PC, Hilliard EG, et
al: Stress-dependent Daxx-CHIP interaction suppresses the p53
apoptotic program. J Biol Chem. 284:20649–20659. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gao Y, Han C, Huang H, et al: Heat shock
protein 70 together with its co-chaperone CHIP inhibits TNF-alpha
induced apoptosis by promoting proteasomal degradation of apoptosis
signal-regulating kinase1. Apoptosis. 15:822–833. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li F, Xie P, Fan Y, et al: C terminus of
Hsc70-interacting protein promotes smooth muscle cell proliferation
and survival through ubiquitin-mediated degradation of FoxO1. J
Biol Chem. 284:20090–20098. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Xu T, Zhou Q, Zhou J, et al: Carboxyl
terminus of Hsp70-interacting protein (CHIP) contributes to human
glioma oncogenesis. Cancer Sci. 102:959–966. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Salvesen GS and Duckett CS: IAP proteins:
blocking the road to death’s door. Nat Rev Mol Cell Biol.
3:401–410. 2002.
|
34
|
Haupt Y, Maya R, Kazaz A and Oren M: Mdm2
promotes the rapid degradation of p53. Nature. 387:296–299. 1997.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Duan L, Miura Y, Dimri M, et al:
Cbl-mediated ubiquitinylation is required for lysosomal sorting of
epidermal growth factor receptor but is dispensable for
endocytosis. J Biol Chem. 278:28950–28960. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Harper JW, Burton JL and Solomon MJ: The
anaphase-promoting complex: it’s not just for mitosis any more.
Genes Dev. 16:2179–2206. 2002.
|
37
|
Li SH, Li CF, Sung MT, et al: Skp2 is an
independent prognosticator of gallbladder carcinoma among
p27Kip1-interacting cell cycle regulators: an immunohistochemical
study of 62 cases by tissue microarray. Mod Pathol. 20:497–507.
2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lakshmanan M, Bughani U, Duraisamy S,
Diwan M, Dastidar S and Ray A: Molecular targeting of E3 ligases -
a therapeutic approach for cancer. Expert Opin Ther Targets.
12:855–870. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sun Y: E3 ubiquitin ligases as cancer
targets and biomarkers. Neoplasia. 8:645–654. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kajiro M, Hirota R, Nakajima Y, et al: The
ubiquitin ligase CHIP acts as an upstream regulator of oncogenic
pathways. Nat Cell Biol. 11:312–319. 2009. View Article : Google Scholar : PubMed/NCBI
|