1.
|
Hedinger C, Williams ED and Sobin LH: The
WHO histological classification of thyroid tumours: a commentary on
the second edition. Cancer. 63:908–911. 1989. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Kondo T, Ezzat S and Asa SL: Pathogenetic
mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer.
6:292–306. 2006. View
Article : Google Scholar : PubMed/NCBI
|
3.
|
Xing M: BRAF mutation in thyroid cancer.
Endocr Relat Cancer. 12:245–262. 2005. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Suarez HG, du Villard JA, Severino M, et
al: Presence of mutations in all three ras genes in human thyroid
tumors. Oncogene. 5:565–570. 1990.PubMed/NCBI
|
5.
|
Santoro M, Melillo RM, Grieco M,
Berlingieri MT, Vecchio G and Fusco A: The TRK and RET tyrosine
kinase oncogenes cooperate with ras in the neoplastic
transformation of a rat thyroid epithelial cell line. Cell Growth
Differ. 4:77–84. 1993.PubMed/NCBI
|
6.
|
de Nigris F, Cerutti J, Morelli C, et al:
Isolation of a SIR-like gene, SIR-T8, that is overexpressed in
thyroid carcinoma cell lines and tissues. Br J Cancer. 86:917–923.
2002.
|
7.
|
Melillo RM, Castellone MD, Guarino V, et
al: The RET/PTC-RAS-BRAF linear signaling cascade mediates the
motile and mitogenic phenotype of thyroid cancer cells. J Clin
Invest. 115:1068–1081. 2005. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Chiu CG, Strugnell SS, Griffith OL, et al:
Diagnostic utility of galectin-3 in thyroid cancer. Am J Pathol.
176:2067–2081. 2010. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Xu XC, el-Naggar AK and Lotan R:
Differential expression of galectin-1 and galectin-3 in thyroid
tumors. Potential diagnostic implications. Am J Pathol.
147:815–822. 1995.PubMed/NCBI
|
10.
|
Gharib H: Fine-needle aspirate biopsy of
thyroid nodules: advantage, limitation and effect. Mayo Clin Proc.
69:44–49. 1994. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Bartolazzi A, Orlandi F, Saggiorato E, et
al: Galectin-3-expression analysis in the surgical selection of
follicular thyroid nodules with indeterminate fine-needle
aspiration cytology: a prospective multicentre study. Lancet Oncol.
9:543–549. 2008. View Article : Google Scholar
|
12.
|
Baylin SB: DNA methylation and gene
silencing in cancer. Nat Clin Pract Oncol. 2(Suppl 1): S4–S11.
2005. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Baylin S and Bestor TH: Altered
methylation patterns in cancer cell genomes: cause or consequence?
Cancer Cell. 1:299–305. 2002. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Czarnecka K, Pastuszak-Lewandoska D,
Migdalska-Sek M, et al: Aberrant methylation as a main mechanism of
TSGs silencing in PTC. Front Biosci (Elite Ed). 3:137–157. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15.
|
Hoque MO, Rosenbaum E, Westra WH, et al:
Quantitative assessment of promoter methylation profiles in thyroid
neoplasms. J Clin Endocrinol Metab. 90:4011–4018. 2005. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Cras A, Darsin-Bettinger D, Balitrand N,
Cassinat B, Soulié A, Toubert ME, Delva L and Chomienne C:
Epigenetic patterns of the retinoic acid receptor
β2promoter in retinoic acid-resistant thyroid cancer
cells. Oncogene. 26:4018–4024. 2007.
|
17.
|
Ehrich M, Nelson MR, Stanssens P, et al:
Quantitative high-throughput analysis of DNA methylation patterns
by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci
USA. 102:15785–15790. 2005. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Keller S, Sarchiapone M, Zarrilli F, et
al: Increased BDNF promoter methylation in the Wernicke area of
suicide subjects. Arch Gen Psychiatry. 67:258–267. 2010. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Tost J and Gut IG: DNA methylation
analysis by pyrosequencing. Nat Protoc. 2:2265–2275. 2007.
View Article : Google Scholar
|
20.
|
Keller S, Sarchiapone M, Zarrilli F, et
al: TrkB gene expression and DNA methylation state in Wernicke area
does not associate with suicidal behavior. J Affect Disord.
135:400–404. 2011. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Elisei R, Shiohara M, Koeffler HP and
Fagin JA: Genetic and epigenetic alterations of the
cyclin-dependent kinase inhibitor-sp15INK4b and p16INK4a in human
thyroid carcinoma cell lines and primary thyroid carcinomas.
Cancer. 83:2185–2193. 1998. View Article : Google Scholar
|
22.
|
Schagdarsurengin U, Gimm O, Hoang-Vu C,
Dralle H, Pfeifer GP and Dammann R: Frequent epigenetic silencing
of the CpG island promoter of RASSF1A in thyroid carcinoma. Cancer
Res. 62:3698–3701. 2002.PubMed/NCBI
|
23.
|
Alvarez-Nuñez F, Bussaglia E, Mauricio D,
et al: PTEN promoter methylationin sporadic thyroid carcinomas.
Thyroid. 16:17–23. 2006.PubMed/NCBI
|
24.
|
Zuo H, Gandhi M, Edreira MM, et al:
Downregulation of Rap1GAP through epigenetic silencing and loss of
heterozygosity promotes invasion and progression of thyroid tumors.
Cancer Res. 70:1389–1397. 2010. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Hu S, Liu D, Tufano RP, et al: Association
of aberrant methylation of tumor suppressor genes with tumor
aggressiveness and BRAF mutation in papillary thyroid cancer. Int J
Cancer. 119:2322–2329. 2006. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Graff JR, Greenberg VE, Herman JG, et al:
Distinct patterns of E-cadherin CpG island methylation in
papillary, follicular, Hurthle’s cell, and poorly differentiated
human thyroid carcinoma. Cancer Res. 58:2063–2066. 1998.PubMed/NCBI
|
27.
|
Wiseman SM, Masoudi H, Niblock P, et al:
Derangement of the E-cadherin/catenin complex is involved in
transformation of differentiated to anaplastic thyroid carcinoma.
Am J Surg. 191:581–587. 2006. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Sassa M, Hayashi Y, Watanabe R, et al:
Aberrant promoter methylation in overexpression of CITED1 in
papillary thyroid cancer. Thyroid. 21:511–517. 2011. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Xing M: BRAF mutation in papillary thyroid
cancer: pathogenic role, molecular bases, and clinical
implications. Endocr Rev. 28:742–762. 2007. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Xing M: Gene methylation in thyroid
tumorigenesis. Endocrinology. 148:948–953. 2007. View Article : Google Scholar : PubMed/NCBI
|
31.
|
Kondo T, Nakazawa T, Ma D, et al:
Epigenetic silencing of TTF-1/NKX2-1 through DNA hypermethylation
and histone H3 modulation in thyroid carcinomas. Lab Invest.
89:791–799. 2009. View Article : Google Scholar : PubMed/NCBI
|
32.
|
Catalano MG, Fortunati N and Boccuzzi G:
Epigenetics modifications and therapeutic prospects in human
thyroid cancer. Front Endocrinol (Lausanne). 3:402012.PubMed/NCBI
|
33.
|
Venkataraman GM, Yatin M, Marcinek R and
Ain KB: Restoration of iodide uptake in dedifferentiated thyroid
carcinoma: relationship to human Na+/I−
symporter gene methylation status. J Clin Endocrinol Metab.
84:2449–2457. 1999.PubMed/NCBI
|
34.
|
Xing M, Usadel H, Cohen Y, et al:
Methylation of the thyroid-stimulating hormone receptor gene in
epithelial thyroid tumors: a marker of malignancy and a cause of
gene silencing. Cancer Res. 63:2316–2321. 2003.PubMed/NCBI
|
35.
|
Smith JA, Fan CY, Zou C, Bodenner D and
Kokoska MS: Methylation status of genes in papillary thyroid
carcinoma. Arch Otolaryngol Head Neck Surg. 133:1006–1011. 2007.
View Article : Google Scholar : PubMed/NCBI
|
36.
|
Galusca B, Dumollard JM, Lassandre S,
Niveleau A, Prades JM, Estour B and Peoc’h M: Global DNA
methylation evaluation: potential complementary marker in
differential diagnosis of thyroid neoplasia. Virchows Arch.
447:18–23. 2005. View Article : Google Scholar : PubMed/NCBI
|