1.
|
Kodama M, Murakami M and Kodama T:
Topological evidence of differential oncogene activation-tumor
suppressor gene inactivation features in 10 human neoplasias, as
revealed by sequential regression analysis of world cancer
incidence data. Anticancer Res. 17:3809–3816. 1997.
|
2.
|
Christoph F, Kempkensteffen C, Weikert S,
Köllermann J, Krause H, Miller K, et al: Methylation of tumour
suppressor genes APAF-1 and DAPK-1 and in vitro effects of
demethylating agents in bladder and kidney cancer. Br J Cancer.
95:1701–1707. 2006. View Article : Google Scholar
|
3.
|
Wang HL, Bai H, Li Y, Sun J and Wang XQ:
Rationales for expression and altered expression of apoptotic
protease activating factor-1 gene in gastric cancer. World J
Gastroenterol. 13:5060–5064. 2007.PubMed/NCBI
|
4.
|
Leung RC, Liu SS, Chan KY, Tam KF, Chan
KL, Wong LC, et al: Promoter methylation of death-associated
protein kinase and its role in irradiation response in cervical
cancer. Oncol Rep. 19:1339–1345. 2008.
|
5.
|
Kato K, Iida S, Uetake H, Takagi Y,
Yamashita T, Inokuchi M, et al: Methylated TMS1 and DAPK genes
predict prognosis and response to chemotherapy in gastric cancer.
Int J Cancer. 122:603–608. 2008. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Raveh T, Droguett G, Horwitz MS, DePinho
RA and Kimchi A: DAP kinase activates a p19ARF/p53-mediated
apoptotic checkpoint to suppress oncogenic transformation. Nat Cell
Biol. 3:1–7. 2001.PubMed/NCBI
|
7.
|
Pruschy M, Rocha S, Zaugg K, Tenzer A,
Hess C, Fisher DE, et al: Key targets for the execution of
radiation-induced tumor cell apoptosis: the role of p53 and
caspases. Int J Radiat Oncol Biol Phys. 49:561–567. 2001.
View Article : Google Scholar : PubMed/NCBI
|
8.
|
Soria JC, Rodriguez M, Liu DD, Lee JJ,
Hong WK and Mao L: Aberrant promoter methylation of multiple genes
in bronchial brush samples from former cigarette smokers. Cancer
Res. 62:351–355. 2002.
|
9.
|
Conerly M and Grady WM: Insights into the
role of DNA methylation in disease through the use of mouse models.
Dis Model Mech. 3:290–297
|
10.
|
Mitsiades CS and Anderson KC: Epigenetic
modulation in hematologic malignancies: challenges and progress. J
Natl Compr Canc Netw. 7(Suppl 8): S1–S12; quiz. S14–S16.
2009.PubMed/NCBI
|
11.
|
Lopez-Serra L and Esteller M: Proteins
that bind methylated DNA and human cancer: reading the wrong words.
Br J Cancer. 98:1881–1885. 2008. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Tost J: DNA methylation: an introduction
to the biology and the disease-associated changes of a promising
biomarker. Methods Mol Biol. 507:3–20. 2009. View Article : Google Scholar
|
13.
|
Suzuki H, Toyota M, Sato H, Sonoda T,
Sakauchi F and Mori M: Roles and causes of abnormal DNA methylation
in gastrointestinal cancers. Asian Pac J Cancer Prev. 7:177–185.
2006.PubMed/NCBI
|
14.
|
Suzuki E, Imoto I, Pimkhaokham A, Nakagawa
T, Kamata N, Kozaki KI, et al: PRTFDC1, a possible tumor-suppressor
gene, is frequently silenced in oral squamous-cell carcinomas by
aberrant promoter hypermethylation. Oncogene. 26:7921–7932. 2007.
View Article : Google Scholar
|
15.
|
Lindholm D and Arumäe U: Cell
differentiation: reciprocal regulation of Apaf-1 and the inhibitor
of apoptosis proteins. J Cell Biol. 167:193–195. 2004. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Sánchez I, Xu CJ, Juo P, Kakizaka A,
Blenis J and Yuan J: Caspase-8 is required for cell death induced
by expanded polyglutamine repeats. Neuron. 22:623–633.
1999.PubMed/NCBI
|
17.
|
Gervais FG, Xu D, Robertson GS,
Vaillancourt JP, Zhu Y, Huang J, et al: Involvement of caspases in
proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein
and amyloidogenic A beta peptide formation. Cell. 97:395–406.
1999.
|
18.
|
Johnson CE, Huang YY, Parrish AB, Smith
MI, Vaughn AE, Zhang Q, et al: Differential Apaf-1 levels allow
cytochrome c to induce apoptosis in brain tumors but not in normal
neural tissues. Proc Natl Acad Sci USA. 104:20820–20825. 2007.
View Article : Google Scholar : PubMed/NCBI
|
19.
|
Hinz S, Kempkensteffen C, Weikert S,
Schostak M, Schrader M, Miller K, et al: EZH2 polycomb
transcriptional repressor expression correlates with methylation of
the APAF-1 gene in superficial transitional cell carcinoma of the
bladder. Tumour Biol. 28:151–157. 2007. View Article : Google Scholar
|
20.
|
Christoph F, Weikert S, Kempkensteffen C,
Krause H, Schostak M, Köllermann J, et al: Promoter
hypermethylation profile of kidney cancer with new proapoptotic p53
target genes and clinical implications. Clin Cancer Res.
12:5040–5046. 2006. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Cohen O, Inbal B, Kissil JL, Raveh T,
Berissi H, Spivak-Kroizaman T, et al: DAP-kinase participates in
TNF-alpha- and Fas-induced apoptosis and its function requires the
death domain. J Cell Biol. 146:141–148. 1999. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Hoffmann AC, Kaifi JT, Vallböhmer D,
Yekebas E, Grimminger P, Leers JM, et al: Lack of prognostic
significance of serum DNA methylation of DAPK, MGMT, and GSTPI in
patients with non-small cell lung cancer. J Surg Oncol.
100:414–417. 2009. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Chim CS, Liang R, Fung TK, Choi CL and
Kwong YL: Epigenetic dysregulation of the death-associated protein
kinase/p14/HDM2/p53/Apaf-1 apoptosis pathway in multiple myeloma. J
Clin Pathol. 60:664–669. 2007. View Article : Google Scholar : PubMed/NCBI
|
24.
|
De Schutter H, Geeraerts H, Verbeken E and
Nuyts S: Promoter methylation of TIMP3 and CDH1 predicts better
outcome in head and neck squamous cell carcinoma treated by
radiotherapy only. Oncol Rep. 21:507–513. 2009.PubMed/NCBI
|
25.
|
Jarmalaite S, Jankevicius F, Kurgonaite K,
Suziedelis K, Mutanen P and Husgafvel-Pursiainen K: Promoter
hypermethylation in tumour suppressor genes shows association with
stage, grade and invasiveness of bladder cancer. Oncology.
75:145–151. 2008. View Article : Google Scholar
|
26.
|
Takino H, Li C, Hu S, Kuo TT, Geissinger
E, Muller-Hermelink HK, et al: Primary cutaneous marginal zone
B-cell lymphoma: a molecular and clinicopathological study of cases
from Asia, Germany, and the United States. Mod Pathol.
21:1517–1526. 2008. View Article : Google Scholar
|
27.
|
Zhao XL, Meng ZY, Qiao YH and Zhang HL:
Promoter methylation of DAPK gene in cervical carcinoma. Ai Zheng.
27:919–923. 2008.(In Chinese).
|
28.
|
Ramchandani S, Bhattacharya SK, Cervoni N
and Szyf M: DNA methylation is a reversible biological signal. Proc
Natl Acad Sci USA. 96:6107–6112. 1999. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Fridman AL, Tang L, Kulaeva OI, Ye B, Li
Q, Nahhas F, et al: Expression profiling identifies three pathways
altered in cellular immortalization: interferon, cell cycle, and
cytoskeleton. J Gerontol A Biol Sci Med Sci. 61:879–889. 2006.
View Article : Google Scholar
|
30.
|
Wang X, Tryndyak V, Apostolov EO, Yin X,
Shah SV, Pogribny IP, et al: Sensitivity of human prostate cancer
cells to chemotherapeutic drugs depends on EndoG expression
regulated by promoter methylation. Cancer Lett. 270:132–143. 2008.
View Article : Google Scholar
|
31.
|
Del Poeta G, Bruno A, Del Principe MI,
Venditti A, Maurillo L, Buccisano F, et al: Deregulation of the
mitochondrial apoptotic machinery and development of molecular
targeted drugs in acute myeloid leukemia. Curr Cancer Drug Targets.
8:207–222. 2008.PubMed/NCBI
|
32.
|
Xu NR, Liu CX, Zheng SB, Li HL, Xu YW and
Xu K: Reversion transcriptional expression of DAPK in bladder
cancer T24 cells 5-aza-2′-deoxycytidine. Nan Fang Yi Ke Da Xue Xue
Bao. 29:1882–1886. 2009.(In Chinese).
|
33.
|
Lemaire M, Chabot GG, Raynal NJ, Momparler
LF, Hurtubise A, Bernstein ML and Momparler RL: Importance of
dose-schedule of 5-aza-2′-deoxycytidine for epigenetic therapy of
cancer. BMC Cancer. 8:1282008.PubMed/NCBI
|