Small compound 6‑O‑angeloylplenolin induces caspase‑dependent apoptosis in human multiple myeloma cells
- Authors:
- Published online on: May 30, 2013 https://doi.org/10.3892/ol.2013.1370
- Pages: 556-558
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
6‑O‑angeloylplenolin (6‑OAP) is a sesquiterpene lactone agent that has been previously demonstrated to inhibit the growth of multiple myeloma (MM) cells through mitotic arrest with accumulated cyclin B1. In the present study, the levels of apoptosis were analyzed in dexamethasone‑sensitive (MM.1S), dexamethasone‑resistant (U266) and chemotherapy‑sensitive (RPMI 8226) myeloma cell lines. Enhanced apoptosis was identified following a 48‑h incubation with 6‑OAP (0‑10 µM) that induced a dose‑dependent decrease in pro‑casp‑3 and the cleavage of its substrate, anti‑poly (ADP-ribose) polymerase (PARP). In addition, time-dependent cleavage of PARP was also detected in U266 and MM.1S cells. The mechanism of 6‑OAP cytotoxicity in all cell lines was associated with the induction of apoptosis with the presence of cleaved caspase‑3 and PARP. In conclusion, 6‑OAP‑induced apoptosis is caspase‑dependent. These observations are likely to provide a framework for future studies of 6‑OAP therapy in MM.