1.
|
Jemal A, Siegel R, Xu J and Ward E: Cancer
statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar
|
2.
|
No authors listed. Ovarian cancer,
five-year stage-specific relative survival rates (2004–2008). J
Natl Cancer Inst. 103:12872011.PubMed/NCBI
|
3.
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Galardi S, Mercatelli N, Giorda E, et al:
miR-221 and miR-222 expression affects the proliferation potential
of human prostate carcinoma cell lines by targeting p27Kip1. J Biol
Chem. 282:23716–23724. 2007. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Miller TE, Ghoshal K, Ramaswamy B, et al:
MicroRNA-221/222 confers tamoxifen resistance in breast cancer by
targeting p27Kip1. J Biol Chem. 283:29897–29903. 2008. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Zhang CZ, Zhang JX, Zhang AL, et al:
MiR-221 and miR-222 target PUMA to induce cell survival in
glioblastoma. Mol Cancer. 9:2292010. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Lu Y, Roy S, Nuovo G, et al:
Anti-microRNA-222 (anti-miR-222) and -181B suppress growth of
tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein
and modulating mitogenic signal. J Biol Chem. 286:42292–42302.
2011. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Stinson S, Lackner MR, Adai AT, et al:
miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes
epithelial-to-mesenchymal transition in breast cancer. Sci Signal.
4:pt52011.PubMed/NCBI
|
10.
|
Stinson S, Lackner MR, Adai AT, et al:
TRPS1 targeting by miR-221/222 promotes the
epithelial-to-mesenchymal transition in breast cancer. Sci Signal.
4:ra412011.PubMed/NCBI
|
11.
|
Yang CJ, Shen WG, Liu CJ, et al: miR-221
and miR-222 expression increased the growth and tumorigenesis of
oral carcinoma cells. J Oral Pathol Med. 40:560–566. 2011.
View Article : Google Scholar : PubMed/NCBI
|
12.
|
Wurz K, Garcia RL, Goff BA, et al: MiR-221
and MiR-222 alterations in sporadic ovarian carcinoma: Relationship
to CDKN1B, CDKNIC and overall survival. Genes Chromosomes Cancer.
49:577–584. 2010.PubMed/NCBI
|
13.
|
Koff A: How to decrease p27Kip1 levels
during tumor development. Cancer Cell. 9:75–76. 2006. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Duncan TJ, Al-Attar A, Rolland P, Harper
S, Spendlove I and Durrant LG: Cytoplasmic p27 expression is an
independent prognostic factor in ovarian cancer. Int J Gynecol
Pathol. 29:8–18. 2010. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Xing H, Wang S, Hu K, et al: Effect of the
cyclin-dependent kinases inhibitor p27 on resistance of ovarian
cancer multicellular spheroids to anticancer chemotherapy. J Cancer
Res Clin Oncol. 131:511–519. 2005. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Masciullo V, Sgambato A, Pacilio C, et al:
Frequent loss of expression of the cyclin-dependent kinase
inhibitor p27 in epithelial ovarian cancer. Cancer Res.
59:3790–3794. 1999.PubMed/NCBI
|
17.
|
Greither T, Grochola LF, Udelnow A,
Lautenschlager C, Würl P and Taubert H: Elevated expression of
microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated
with poorer survival. Int J Cancer. 126:73–80. 2010. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Visone R, Russo L, Pallante P, et al:
MicroRNAs (miR)-221 and miR-222, both overexpressed in human
thyroid papillary carcinomas, regulate p27Kip1 protein levels and
cell cycle. Endocr Relat Cancer. 14:791–798. 2007. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Quintavalle C, Garofalo M, Zanca C, et al:
miR-221/222 over-expression in human glioblastoma increases
invasiveness by targeting the protein phosphate PTPμ.
Oncogene. 31:858–868. 2012. View Article : Google Scholar : PubMed/NCBI
|