microRNA‑199a is able to reverse cisplatin resistance in human ovarian cancer cells through the inhibition of mammalian target of rapamycin

  • Authors:
    • Zhongxian Wang
    • Zhou Ting
    • Ya Li
    • Gang Chen
    • Yunping Lu
    • Xing Hao
  • View Affiliations

  • Published online on: July 8, 2013     https://doi.org/10.3892/ol.2013.1448
  • Pages: 789-794
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

microRNAs (miRNAs/miRs) may have a crucial function in tumor metastasis through the regulation of a plethora of signaling pathways. Increasing evidence has shown that miR‑199a is important in regulating the tumor metastasis of ovarian cancer, although the precise biological function of miR‑199a is unclear at present. In the current study, it was observed that the expression levels of miR‑199a were higher in OV2008 cells compared with C13* cells. However, lower levels of mammalian target of rapamycin (mTOR) protein were detected by western blotting in the OV2008 cells compared with the C13* cells. The miR‑199a levels were increased in the C13* cells using miR‑199a mimics and the mTOR levels were observed to decrease. This may have resulted in a reversal of cisplatin resistance in the C13* cells. To test this hypothesis, the Renilla luciferase reporter gene system was used to analyze the mTOR levels. The results indicated that the expression levels of mTOR were significantly blocked by the increased miR‑199a levels. When the miR‑199a inhibitor was applied to decrease the miR‑199a levels, it was observed that the mTOR expression levels were increased, while cisplatin‑induced apoptosis was decreased in the OV2008 cells. The study concludes that miR‑199a is able to reverse cisplatin resistance in human ovarian cancer cells through the inhibition of mTOR and that mTOR may be the target of miR‑199a during this process.
View Figures
View References

Related Articles

Journal Cover

September 2013
Volume 6 Issue 3

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Wang Z, Ting Z, Li Y, Chen G, Lu Y and Hao X: microRNA‑199a is able to reverse cisplatin resistance in human ovarian cancer cells through the inhibition of mammalian target of rapamycin. Oncol Lett 6: 789-794, 2013.
APA
Wang, Z., Ting, Z., Li, Y., Chen, G., Lu, Y., & Hao, X. (2013). microRNA‑199a is able to reverse cisplatin resistance in human ovarian cancer cells through the inhibition of mammalian target of rapamycin. Oncology Letters, 6, 789-794. https://doi.org/10.3892/ol.2013.1448
MLA
Wang, Z., Ting, Z., Li, Y., Chen, G., Lu, Y., Hao, X."microRNA‑199a is able to reverse cisplatin resistance in human ovarian cancer cells through the inhibition of mammalian target of rapamycin". Oncology Letters 6.3 (2013): 789-794.
Chicago
Wang, Z., Ting, Z., Li, Y., Chen, G., Lu, Y., Hao, X."microRNA‑199a is able to reverse cisplatin resistance in human ovarian cancer cells through the inhibition of mammalian target of rapamycin". Oncology Letters 6, no. 3 (2013): 789-794. https://doi.org/10.3892/ol.2013.1448