1
|
Kubena KS and McMurray DN: Nutrition and
the immune system: a review of nutrient-nutrient interactions. J Am
Diet Assoc. 96:1156–1164. 1996. View Article : Google Scholar : PubMed/NCBI
|
2
|
Marrack P, McKee AS and Munks MW: Towards
an understanding of the adjuvant action of aluminium. Nat Rev
Immunol. 9:287–293. 2009. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Singh M, Chakrapani A and O’Hagan D:
Nanoparticles and microparticles as vaccine-delivery systems.
Expert Rev Vaccines. 6:797–808. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
HogenEsch H: Mechanisms of stimulation of
the immune response by aluminum adjuvants. Vaccine. 20(Suppl 3):
S34–S39. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Schirmbeck R, Melber K, Kuhröber A,
Janowicz ZA and Reimann J: Immunization with soluble hepatitis B
virus surface protein elicits murine H-2 class I-restricted CD8+
cytotoxic T lymphocyte responses in vivo. J Immunol. 152:1110–1119.
1994.PubMed/NCBI
|
6
|
Aguilar JC and Rodríguez EG: Vaccine
adjuvants revisited. Vaccine. 25:3752–3762. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Guy B: The perfect mix: recent progress in
adjuvant research. Nat Rev Microbiol. 5:505–517. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pascual DM, Morales RD, Gil ED, Muñoz LM,
López JE and Casanueva OL: Adjuvants: Present regulatory
challenges. Vaccine. 24(Suppl 2): S88–S89. 2006. View Article : Google Scholar
|
9
|
Petrovsky N and Cooper PD:
Carbohydrate-based immune adjuvants. Expert Rev Vaccines.
10:523–537. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rivas E, Gómez-Arnáiz M, Ricoy JR, et al:
Macrophagic myofasciitis in childhood: a controversial entity.
Pediatr Neurol. 33:350–356. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gherardi RK, Coquet M, Cherin P, et al:
Macrophagic myofasciitis lesions assess long-term persistence of
vaccine-derived aluminium hydroxide in muscle. Brain.
124:1821–1831. 2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ramberg JE, Nelson ED and Sinnott RA:
Immunomodulatory dietary polysaccharides: a systematic review of
the literature. Nutr J. 9:542010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Paulsen BS: Plant polysaccharides with
immunostimulatory activities. Curr Org Chem. 5:939–950. 2001.
View Article : Google Scholar
|
14
|
Kusaykin M, Bakunina I, Sova V, et al:
Structure, biological activity, and enzymatic transformation of
fucoidans from the brown seaweeds. Biotechnol J. 3:904–915. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Paulsen BS: Biologically active
polysaccharides as possible lead compounds. Phytochem Rev.
1:379–387. 2002. View Article : Google Scholar
|
16
|
Bacon A, Makin J, Sizer PJ, et al:
Carbohydrate biopolymers enhance antibody responses to mucosally
delivered vaccine antigens. Infect Immun. 68:5764–5770. 2000.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Stambas J, Pietersz G, McKenzie I and
Cheers C: Oxidised mannan as a novel adjuvant inducing mucosal IgA
production. Vaccine. 20:1068–1078. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mond JJ, Vos Q, Lees A and Snapper CM: T
cell independent antigens. Curr Opin Immunol. 7:349–354. 1995.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Hetland G, Johnson E, Lyberg T,
Bernardshaw S, Tryggestad AM and Grinde B: Effects of the medicinal
mushroom Agaricus blazei Murill on immunity, infection and
cancer. Scand J Immunol. 68:363–370. 2008.
|
20
|
Endo M, Beppu H, Akiyama H, et al:
Agaritine purified from Agaricus blazei Murill exerts
anti-tumor activity against leukemic cells. Biochim Biophy Acta.
1800:669–673. 2010.
|
21
|
Takaku T, Kimura Y and Okuda H: Isolation
of an antitumor compound from Agaricus blazei Murill and its
mechanism of action. J Nutr. 131:1409–1413. 2001.PubMed/NCBI
|
22
|
Oh TW, Kim YA, Jang WJ, Byeon JI, Ryu CH,
Kim JO and Ha YL: Semipurified fractions from the submerged-culture
broth of Agaricus blazei Murill reduce blood glucose levels
in streptozotocin-induced diabetic rats. J Agr Food Chem.
58:4113–4119. 2010.PubMed/NCBI
|
23
|
Niu YC, Liu JC, Zhao XM and Cao J: A low
molecular weight polysaccharide isolated from Agaricus
blazei Murill (LMPAB) exhibits its anti-metastatic effect by
down-regulating metalloproteinase-9 and up-regulating Nm23-H1. Am J
Chin Med. 37:909–921. 2009.PubMed/NCBI
|
24
|
Liu JC, Yue LL, Zhang C, et al: A
polysaccharide isolated from Agaricus blazei Murill inhibits
sialyl Lewis X/E-selectin-mediated metastatic potential in HT-29
cells through downregulating α-1,3-fucosyltransferase-VII
(FucT-VII). Carbohydr Polym. 79:921–926. 2010.
|
25
|
Yue LL, Cui HX, Li CC, Lin Y, Niu YC, Sun
YX, Niu YC, Wen XC and Liu JC: A polysaccharide from Agaricus
blazei attenuates tumor cell adhesion via inhibiting E-selectin
expression. Carbohydr Polym. 88:1326–1333. 2012.
|
26
|
Liu JC and Sun YX: Structural analysis of
an alkali-extractable and water-soluble polysaccharide (ABP-AW1)
from the fruiting bodies of Agaricus blazei Murill.
Carbohydr Polym. 86:429–432. 2011. View Article : Google Scholar
|
27
|
Sun Y, Wang S, Li T, Li X, Jiao L and
Zhang L: Purification, structure and immunobiological activity of a
new water-soluble polysaccharide from the mycelium of Polyporus
albicans (Imaz.) Teng. Bioresour Technol. 99:900–904. 2008.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Concha C, Hu S and Holmberg O: The
proliferative responses of cow stripping milk and blood lymphocytes
to pokeweed mitogen and ginseng in vitro. Vet Res. 27:107–115.
1996.PubMed/NCBI
|
29
|
Sjölander A, van’t Land B and Lövgren
Bengtsson K: Iscoms containing purified Quillaja saponins
upregulate both Th1-like and Th2-like immune responses. Cell
Immunol. 177:69–76. 1997.
|
30
|
Estrada A, Katselis GS, Laarveld B and
Barl B: Isolation and evaluation of immunological adjuvant
activities of saponins from Polygala senega L. Comp Immunol
Microbiol Infect Dis. 23:27–43. 2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hartmann G, Marschner A, Viveros PR, et
al: CpG oligonucleotides induce strong humoral but only weak CD4+ T
cell responses to protein antigens in rhesus macaques in vivo.
Vaccine. 23:3310–3317. 2005.PubMed/NCBI
|
32
|
Sobol PT, Boudreau JE, Stephenson K, Wan
Y, Lichty BD and Mossman KL: Adaptive antiviral immunity is a
determinant of the therapeutic success of oncolytic virotherapy.
Mol Ther. 19:335–344. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kawase O, Goo YK, Jujo H, Nishikawa Y and
Xuan X: Starfish, Asterias amurensis and Asterina
pectinifera, as potential sources of Th1 immunity-stimulating
adjuvants. J Vet Med Sci. 73:227–229. 2011.
|
34
|
Pulendran B and Ahmed R: Translating
innate immunity into immunological memory: implications for vaccine
development. Cell. 124:849–863. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sun Y, Liu J, Yu H and Gong C: Isolation
and evaluation of immunological adjuvant activities of saponins
from the roots of Pulsatilla chinensis with less adverse
reactions. Int Immunopharmacol. 10:584–590. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Han Y, Guo Q, Zhang M, Chen Z and Cao X:
CD69+ CD4+ CD25- T cells, a new subset of regulatory T cells,
suppress T cell proliferation through membrane-bound TGF-beta 1. J
Immunol. 182:111–120. 2009.
|
37
|
Watts C and Powis S: Pathways of antigen
processing and presentation. Rev Immunogenet. 1:60–74.
1999.PubMed/NCBI
|
38
|
Insel RA and Anderson PW:
Oligosaccharide-protein conjugate vaccines induce and prime for
oligoclonal IgG antibody responses to the Haemophilus
influenzae b capsular polysaccharide in human infants. J Exp
Med. 163:262–269. 1986. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shelly MA, Jacoby H, Riley GJ, Graves BT,
Pichichero M and Treanor JJ: Comparison of pneumococcal
polysaccharide and CRM197 conjugated pneumococcal oligosaccharide
vaccines in young and elderly adults. Infect Immun. 65:242–247.
1997.PubMed/NCBI
|
40
|
Kasper DL, Paoletti LC, Wessels MR,
Guttormsen HK, Carey VJ, Jennings HJ and Baker CJ: Immune response
to type III group B streptococcal polysaccharide-tetanus toxoid
conjugate vaccine. J Clin Invest. 98:2308–2314. 1996. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shiomi H, Masuda A, Nishiumi S, et al:
Gamma interferon produced by antigen-specific CD4+ T
cells regulates the mucosal immune responses to Citrobacter
rodentium infection. Infect Immun. 78:2653–2666. 2010.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Meng C, Peng X, Shi X, Wang H and Guo Y:
Effects of a chemically derived homo zwitterionic polysaccharide on
immune activation in mice. Acta Biochim Biophys Sin (Shanghai).
41:737–744. 2009. View Article : Google Scholar : PubMed/NCBI
|