1
|
Wen PY and Kesari S: Malignant gliomas.
Curr Neurol Neurosci Rep. 4:218–227. 2004. View Article : Google Scholar
|
2
|
Couldwell WT, Dore-Duffy P, Apuzzo ML and
Antel JP: Malignant glioma modulation of immune function: relative
contribution of different soluble factors. J Neuroimmunol.
33:89–96. 1991. View Article : Google Scholar : PubMed/NCBI
|
3
|
Nitta T, Hishii M, Sato K and Okumura K:
Selective expression of interleukin-10 gene within glioblastoma
multiforme. Brain Res. 649:122–128. 1994. View Article : Google Scholar : PubMed/NCBI
|
4
|
Roussel E, Gingras MC, Grimm EA, Bruner JM
and Moser RP: Predominance of a type 2 intratumoural immune
response in fresh tumour-infiltrating lymphocytes from human
gliomas. Clin Exp Immunol. 105:344–352. 1996. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bogdan C and Nathan C: Modulation of
macrophage function by transforming growth factor beta,
interleukin-4, and interleukin-10. Ann NY Acad Sci. 685:713–739.
1993. View Article : Google Scholar : PubMed/NCBI
|
6
|
Roszman T, Elliott L and Brooks W:
Modulation of T-cell function by gliomas. Immunol Today.
12:370–374. 1991. View Article : Google Scholar : PubMed/NCBI
|
7
|
Andaloussi AE, Han Y and Lesniak MS:
Progression of intracranial glioma disrupts thymic homeostasis and
induces T-cell apoptosis in vivo. Cancer Immunol Immunother.
57:1807–1816. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Heimberger AB, Abou-Ghazal M, Reina-Ortiz
C, Yang DS, Sun W, Qiao W, et al: Incidence and prognostic impact
of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res.
14:5166–5172. 2008.
|
9
|
Brooks WH, Latta RB, Mahaley MS, Roszman
TL, Dudka L and Skaggs C: Immunobiology of primary intracranial
tumors. Part 5: Correlation of a lymphocyte index and clinical
status. J Neurosurg. 54:331–337. 1981. View Article : Google Scholar : PubMed/NCBI
|
10
|
Brooks WH, Netsky MG, Normansell DE and
Horwitz DA: Depressed cell-mediated immunity in patients with
primary intracranial tumors. Characterization of a humoral
immunosuppressive factor. J Exp Med. 136:1631–1647. 1972.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Brooks WH, Roszman TL and Rogers AS:
Impairment of rosette-forming T lymphocytes in patients with
primary intracranial tumors. Cancer. 37:1869–1873. 1976. View Article : Google Scholar : PubMed/NCBI
|
12
|
Elliott LH, Brooks WH and Roszman TL:
Cytokinetic basis for the impaired activation of lymphocytes from
patients with primary intracranial tumors. J Immunol.
132:1208–1215. 1984.PubMed/NCBI
|
13
|
Roszman TL, Brooks WH, Steele C and
Elliott LH: Pokeweed mitogen-induced immunoglobulin secretion by
peripheral blood lymphocytes from patients with primary
intracranial tumors. Characterization of T helper and B cell
function. J Immunol. 134:1545–1550. 1985.
|
14
|
Ashkenazi E, Deutsch M, Tirosh R, Weinreb
A, Tsukerman A and Brodie C: A selective impairment of the IL-2
system in lymphocytes of patients with glioblastomas: increased
level of soluble IL-2R and reduced protein tyrosine
phosphorylation. Neuroimmunomodulation. 4:49–56. 1997.PubMed/NCBI
|
15
|
Watters JJ, Schartner JM and Badie B:
Microglia function in brain tumors. J Neurosci Res. 81:447–455.
2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bettelli E, Korn T and Kuchroo VK: Th17:
the third member of the effector T cell trilogy. Curr Opin Immunol.
19:652–657. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Harrington LE, Hatton RD, Mangan PR,
Turner H, Murphy TL, Murphy KM and Weaver CT: Interleukin
17-producing CD4+ effector T cells develop via a lineage distinct
from the T helper type 1 and 2 lineages. Nat Immunol. 6:1123–1132.
2005.
|
18
|
Nam JS, Terabe M, Kang MJ, Chae H, Voong
N, Yang YA, et al: Transforming growth factor beta subverts the
immune system into directly promoting tumor growth through
interleukin-17. Cancer Res. 68:3915–3923. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Toh ML, Kawashima M, Zrioual S, Hot A and
Miossec P and Miossec P: IL-17 inhibits human Th1 differentiation
through IL-12R beta 2 downregulation. Cytokine. 48:226–230. 2009.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang L, Yi T, Kortylewski M, Pardoll DM,
Zeng D and Yu H: IL-17 can promote tumor growth through an
IL-6-Stat3 signaling pathway. J Exp Med. 206:1457–1464. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Hu J, Mao Y, Li M and Lu Y: The profile of
Th17 subset in glioma. Int Immunopharmacol. 11:1173–1179. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wainwright DA, Sengupta S, Han Y, Ulasov
IV and Lesniak MS: The presence of IL-17A and T helper 17 cells in
experimental mouse brain tumors and human glioma. PLoS One.
5:e153902010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cantini G, Pisati F, Mastropietro A,
Frattini V, Iwakura Y, Finocchiaro G and Pellegatta S: A critical
role for regulatory T cells in driving cytokine profiles of Th17
cells and their modulation of glioma microenvironment. Cancer
Immunol Immunother. 60:1739–1750. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Numasaki M, Watanabe M, Suzuki T,
Takahashi H, Nakamura A, McAllister F, et al: IL-17 enhances the
net angiogenic activity and in vivo growth of human non-small cell
lung cancer in SCID mice through promoting CXCR-2-dependent
angiogenesis. J Immunol. 175:6177–6189. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wakita D, Sumida K, Iwakura Y, Nishikawa
H, Ohkuri T, Chamoto K, et al: Tumor-infiltrating IL-17-producing
gammadelta T cells support the progression of tumor by promoting
angiogenesis. Eur J Immunol. 40:1927–1937. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Moran EM, Connolly M, Gao W, McCormick J,
Fearon U and Veale DJ: Interleukin-17A induction of angiogenesis,
cell migration, and cytoskeletal rearrangement. Arthritis Rheum.
63:3263–3273. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu J, Duan Y, Cheng X, Chen X, Xie W,
Long H, et al: IL-17 is associated with poor prognosis and promotes
angiogenesis via stimulating VEGF production of cancer cells in
colorectal carcinoma. Biochem Biophys Res Commun. 407:348–354.
2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Saito Y, Oba N, Nishinakagawa S, Mizuguchi
Y, Kojima T, Nomura K and Nakatsura T: Identification of
beta2-microgloblin as a candidate for early diagnosis of
imaging-invisible hepatocellular carcinoma in patient with liver
cirrhosis. Oncol Rep. 23:1325–1330. 2010.PubMed/NCBI
|
29
|
Rapisarda A and Melillo G: Role of the
VEGF/VEGFR axis in cancer biology and therapy. Adv Cancer Res.
114:237–267. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Murugaiyan G and Saha B: Protumor vs
antitumor functions of IL-17. J Immunol. 183:4169–4175. 2009.
View Article : Google Scholar : PubMed/NCBI
|