Role of IL‑9 and STATs in hematological malignancies (Review)
- Authors:
- Na Chen
- Xin Wang
-
Affiliations: Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China - Published online on: December 16, 2013 https://doi.org/10.3892/ol.2013.1761
- Pages: 602-610
This article is mentioned in:
Abstract
Namkung JH, Lee JE, Kim E, et al: An association between IL-9 and IL-9 receptor gene polymorphisms and atopic dermatitis in a Korean population. J Dermatol Sci. 62:16–21. 2011.PubMed/NCBI | |
Knoops L and Renauld JC: IL-9 and its receptor: from signal transduction to tumorigenesis. Growth Factors. 22:207–215. 2004. View Article : Google Scholar : PubMed/NCBI | |
Putheti P, Awasthi A, Popoola J, Gao W and Strom TB: Human CD4 memory T cells can become CD4+IL-9+ T cells. PLoS One. 5:e87062010. | |
van den Ham HJ, de Waal L, Andeweg AC and de Boer RJ: Identification of helper T cell master regulator candidates using the polar score method. J Immunol Methods. 361:98–109. 2010. | |
Chang HC, Han L, Jabeen R, Carotta S, Nutt SL and Kaplan MH: PU.1 regulates TCR expression by modulating GATA-3 activity. J Immunol. 183:4887–4894. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chang HC, Zhang S, Thieu VT, Slee RB, Bruns HA, Laribee RN, Klemsz MJ and Kaplan MH: PU.1 expression delineates heterogeneity in primary Th2 cells. Immunity. 22:693–703. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, Han L, et al: The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol. 11:527–534. 2010. View Article : Google Scholar : PubMed/NCBI | |
Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, Taube C, et al: Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity. 33:192–202. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ahyi AN, Chang HC, Dent AL, Nutt SL and Kaplan MH: IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines. J Immunol. 183:1598–1606. 2009. View Article : Google Scholar : PubMed/NCBI | |
Brustle A, Heink S, Huber M, Rosenplanter C, Stadelmann C, Yu P, Arpaia E, Mak TW, Kamradt T and Lohoff M: The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol. 8:958–966. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lohoff M, Mittrucker HW, Prechtl S, Bischof S, Sommer F, Kock S, Ferrick DA, Duncan GS, Gessner A and Mak TW: Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc Natl Acad Sci USA. 99:11808–11812. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hültner L, Kölsch S, Stassen M, Kaspers U, Kremer JP, Mailhammer R, Moeller J, Broszeit H and Schmitt E: In activated mast cells, IL-1 up-regulates the production of several Th2-related cytokines including IL-9. J Immunol. 164:5556–5563. 2000.PubMed/NCBI | |
Stassen M, Arnold M, Hültner L, Müller C, Neudörfl C, Reineke T and Schmitt E: Murine bone marrow-derived mast cells as potent producers of IL-9: costimulatory function of IL-10 and kit ligand in the presence of IL-1. J Immunol. 164:5549–5555. 2000. View Article : Google Scholar : PubMed/NCBI | |
Stassen M, Müller C, Arnold M, Hültner L, Klein-Hessling S, Neudörfl C, Reineke T, Serfling E and Schmitt E: IL-9 and IL-13 production by activated mast cells is strongly enhanced in the presence of lipopolysaccharide: NF-kappa B is decisively involved in the expression of IL-9. J Immunol. 166:4391–4398. 2001. View Article : Google Scholar | |
Stassen M, Klein M, Becker M, Bopp T, Neudörfl C, Richter C, Heib V, Klein-Hessling S, Serfling E, Schild H and Schmitt E: p38 MAP kinase drives the expression of mast cell-derived IL-9 via activation of the transcription factor GATA-1. Mol Immunol. 44:926–933. 2007. View Article : Google Scholar : PubMed/NCBI | |
Osterfeld H, Ahrens R, Strait R, Finkelman FD, Renauld JC and Hogan SP: Differential roles for the IL-9/IL-9 receptor alpha-chain pathway in systemic and oral antigen-induced anaphylaxis. J Allergy Clin Immunol. 125:469–476. 2010. View Article : Google Scholar : PubMed/NCBI | |
Demoulin JB, Louahed J, Dumoutier L, Stevens M and Renauld JC: MAP kinase activation by interleukin-9 in lymphoid and mast cell lines. Oncogene. 22:1763–1770. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cosmi L, Liotta F, Angeli R, Mazzinghi B, Santarlasci V, Manetti R, Lasagni L, Vanini V, Romagnani P, Maggi E, et al: Th2 cells are less susceptible than Th1 cells to the suppressive activity of CD25+ regulatory thymocytes because of their responsiveness to different cytokines. Blood. 103:3117–3121. 2004. | |
Druez C, Coulie P, Uyttenhove C and Van Snick J: Functional and biochemical characterization of mouse P40/IL-9 receptors. J Immunol. 145:2494–2499. 1990.PubMed/NCBI | |
Abdelilah S, Latifa K, Esra N, Cameron L, Bouchaib L, Nicolaides N, Levitt R and Hamid Q: Functional expression of IL-9 receptor by human neutrophils from asthmatic donors: role in IL-8 release. J Immunol. 166:2768–2774. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kearley J, Erjefalt JS, Andersson C, Benjamin E, Jones CP, Robichaud A, Pegorier S, Brewah Y, Burwell TJ, Bjermer L, et al: IL-9 governs allergen-induced mast cell numbers in the lung and chronic remodeling of the airways. Am J Respir Crit Care Med. 183:865–875. 2011. View Article : Google Scholar | |
Nowak EC, Weaver CT, Turner H, Begum-Haque S, Becher B, Schreiner B, Coyle AJ, Kasper LH and Noelle RJ: IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med. 206:1653–1660. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, Scott ZA, Coyle AJ, Reed JL, Van Snick J, et al: Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature. 442:997–1002. 2006. View Article : Google Scholar : PubMed/NCBI | |
Knoops L, Louahed J and Renauld JC: IL-9-induced expansion of B-1b cells restores numbers but not function of B-1 lymphocytes in xid mice. J Immunol. 172:6101–6106. 2004. View Article : Google Scholar : PubMed/NCBI | |
Vink A, Warnier G, Brombacher F and Renauld JC: Interleukin 9-induced in vivo expansion of the B-1 lymphocyte population. J Exp Med. 189:1413–1423. 1999. View Article : Google Scholar : PubMed/NCBI | |
Dugas B, Renauld JC, Pene J, Bonnefoy JY, Peti-Frère C, Braquet P, Bousquet J, Van Snick J and Mencia-Huerta JM: Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes. Eur J Immunol. 23:1687–1692. 1993. View Article : Google Scholar : PubMed/NCBI | |
Petit-Frere C, Dugas B, Braquet P and Mencia-Huerta JM: Interleukin-9 potentiates the interleukin-4-induced IgE and IgG1 release from murine B lymphocytes. Immunology. 79:146–151. 1993.PubMed/NCBI | |
Fawaz LM, Sharif-Askari E, Hajoui O, Soussi-Gounni A, Hamid Q and Mazer BD: Expression of IL-9 receptor alpha chain on human germinal center B cells modulates IgE secretion. J Allergy Clin Immunol. 120:1208–1215. 2007. View Article : Google Scholar : PubMed/NCBI | |
Renauld JC, Druez C, Kermouni A, Houssiau F, Uyttenhove C, Van Roost E and Van Snick J: Expression cloning of the murine and human interleukin 9 receptor cDNAs. Proc Natl Acad Sci USA. 89:5690–5694. 1992. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Petrus M, Bryant BR, Phuc Nguyen V, Stamer M, Goldman CK, Bamford R, Morris JC, Janik JE and Waldmann TA: Induction of the IL-9 gene by HTLV-I Tax stimulates the spontaneous proliferation of primary adult T-cell leukemia cells by a paracrine mechanism. Blood. 111:5163–5172. 2008. View Article : Google Scholar : PubMed/NCBI | |
Umezu-Goto M, Kajiyama Y, Kobayashi N, Kaminuma O, Suko M and Mori A: IL-9 production by peripheral blood mononuclear cells of atopic asthmatics. Int Arch Allergy Immunol. 143(Suppl 1): 76–79. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Petrus M, Bryant BR, Nguyen VP, Goldman CK, Bamford R, Morris JC, Janik JE and Waldmann TA: Autocrine/paracrine cytokine stimulation of leukemic cell proliferation in smoldering and chronic adult T-cell leukemia. Blood. 116:5948–5956. 2010. View Article : Google Scholar : PubMed/NCBI | |
Merz H, Kaehler C, Hoefig KP, et al: Interleukin-9 (IL-9) and NPM-ALK each generate mast cell hyperplasia as single ‘hit’ and cooperate in producing a mastocytosis-like disease in mice. Oncotarget. 1:104–119. 2010.PubMed/NCBI | |
Lin Q, Lai R, Chirieac LR, Li C, Thomazy VA, Grammatikakis I, Rassidakis GZ, Zhang W, Fujio Y, Kunisada K, et al: Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol. 167:969–980. 2005. View Article : Google Scholar | |
Dahéron L, Opitz SL, Zaehres H, Lensch MW, Andrews PW, Itskovitz-Eldor J and Daley GQ: LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells. 22:770–778. 2004.PubMed/NCBI | |
Raptis L, Arulanandam R, Geletu M and Turkson J: The R(h)oads to Stat3: Stat3 activation by the Rho GTPases. Exp Cell Res. 317:1787–1795. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kidder BL, Yang J and Palmer S: STAT3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS One. 3:e39322008. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, et al: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 133:1106–1117. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kuznetsov VA, Singh O and Jenjaroenpun P: Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome. BMC Genomics. 11(Suppl 1): S122010. View Article : Google Scholar | |
Ying QL, Nichols J, Chambers I and Smith A: BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 115:281–292. 2003. View Article : Google Scholar | |
Ramana CV, Chatterjee-Kishore M, Nguyen H and Stark GR: Complex roles of STAT1 in regulating gene expression. Oncogene. 19:2619–2627. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bourillot PY, Aksoy I, Schreiber V, Wianny F, Schulz H, Hummel O, Hubner N and Savatier P: Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells. 27:1760–1771. 2009. View Article : Google Scholar | |
Yu Z, Zhang W and Kone BC: Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor κB. Biochem J. 367:97–105. 2002.PubMed/NCBI | |
Zhang X, Wrzeszczynska MH, Horvath CM and Darnell JE Jr: Interacting regions in STAT3 and c-Jun that participate in cooperative transcriptional activation. Mol Cell Biol. 19:7138–7146. 1999. | |
Giraud S, Bienvenu F, Avril S, Gascan H, Heery DM and Coqueret O: Functional interaction of STAT3 transcription factor with the coactivator NcoA/SRC1a. J Biol Chem. 277:8004–8011. 2002. View Article : Google Scholar : PubMed/NCBI | |
Youn MY, Yoo HS, Kim MJ, Hwang SY, Choi Y, Desiderio SV and Yoo JY: hCTR9, a component of Paf1 complex, participates in the transcription of interleukin 6-responsive genes through regulation of STAT3-DNA interactions. J Biol Chem. 282:34727–34734. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ni Z and Bremner R: Brahma-related gene 1-dependent STAT3 recruitment at IL-6-inducible genes. J Immunol. 178:345–351. 2007. View Article : Google Scholar : PubMed/NCBI | |
Giraud S, Hurlstone A, Avril S and Coqueret O: Implication of BRG1 and cdk9 in the STAT3-mediated activation of the p21waf1 gene. Oncogene. 23:7391–7398. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ho L, Jothi R, Ronan JL, Cui K, Zhao K and Crabtree GR: An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci USA. 106:5187–5191. 2009. View Article : Google Scholar | |
Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii AI, Ranish J and Crabtree GR: An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci USA. 106:5181–5186. 2009. View Article : Google Scholar | |
Singhal N, Graumann J, Wu G, Araúzo-Bravo MJ, Han DW, Greber B, Gentile L, Mann M and Schöler HR: Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell. 141:943–955. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guiter C, Dusanter-Fourt I, Copie-Bergman C, Boulland ML, Le Gouvello S, Gaulard P, Leroy K and Castellano F: Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma. Blood. 104:543–549. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gerber M and Shilatifard A: Transcriptional elongation by RNA polymerase II and histone methylation. J Biol Chem. 278:26303–26306. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Paszkowski-Rogacz M, Nitzsche A, Slabicki MM, Heninger AK, de Vries I, Kittler R, Junqueira M, Shevchenko A, Schulz H, et al: A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell. 4:403–415. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ponnusamy MP, Deb S, Dey P, Chakraborty S, Rachagani S, Senapati S and Batra SK: RNA polymerase II associated factor 1/PD2 maintains self-renewal by its interaction with Oct3/4 in mouse embryonic stem cells. Stem Cells. 27:3001–3011. 2009.PubMed/NCBI | |
Lessard JA and Crabtree GR: Chromatin regulatory mechanisms in pluripotency. Annu Rev Cell Dev Biol. 6:503–532. 2010. View Article : Google Scholar | |
Skinnider BF, Elia AJ, Gascoyne RD, Patterson B, Trumper L, Kapp U and Mak TW: Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 99:618–626. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wei L, Vahedi G, Sun HW, Watford WT, Takatori H, Ramos HL, Takahashi H, Liang J, Gutierrez-Cruz G, Zang C, et al: Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity. 32:840–851. 2010. View Article : Google Scholar | |
Elo LL, Järvenpää H, Tuomela S, Raghav S, Ahlfors H, Laurila K, Gupta B, Lund RJ, Tahvanainen J, Hawkins RD, et al: Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming. Immunity. 32:852–862. 2010. View Article : Google Scholar : PubMed/NCBI | |
Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S, Nakanishi K, Yoshida N, Kishimoto T and Akira S: Essential role of STAT6 in IL-4 signalling. Nature. 380:627–630. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ansel KM, Djuretic I, Tanasa B and Rao A: Regulation of Th2 differentiation and Il4 locus accessibility. Annu Rev Immunol. 24:607–656. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M and Kuchroo VK: IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol. 9:1347–1355. 2008.PubMed/NCBI | |
Perumal NB and Kaplan MH: Regulating Il9 transcription in T helper cells. Trends Immunol. 32:146–150. 2011. View Article : Google Scholar : PubMed/NCBI | |
Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm and Stockinger B: Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 9:1341–1346. 2008. | |
Kaplan MH, Daniel C, Schindler U and Grusby MJ: STAT proteins control lymphocyte proliferation by regulating p27Kip1 expression. Mol Cell Biol. 18:1996–2003. 1998.PubMed/NCBI | |
Zhu J, Guo L, Min B, Watson CJ, Hu-Li J, Young HA, Tsichlis PN and Paul WE: Growth factor independent-1 induced by IL-4 regulates Th2 cell proliferation. Immunity. 16:733–744. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kaplan MH, Wurster AL, Smiley ST and Grusby MJ: STAT6-dependent and -independent pathways for IL-4 production. J Immunol. 163:6536–6540. 1999.PubMed/NCBI | |
Bruns HA, Schindler U and Kaplan MH: Expression of a constitutively active STAT6 in vivo alters lymphocyte homeostasis with distinct effects in T and B cells. J Immunol. 170:3478–3487. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kaplan MH, Whitfield JR, Boros DL and Grusby MJ: Th2 cells are required for the Schistosoma mansoni egg-induced granulomatous response. J Immunol. 160:1850–1856. 1998.PubMed/NCBI | |
Wurster AL, Rodgers VL, White MF, Rothstein TL and Grusby MJ: Interleukin-4-mediated protection of primary B cells from apoptosis through STAT6-dependent up-regulation of Bcl-xL. J Biol Chem. 277:27169–27175. 2002. View Article : Google Scholar : PubMed/NCBI | |
Takeda K, Kamanaka M, Tanaka T, Kishimoto T and Akira S: Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice. J Immunol. 157:3220–3222. 1996.PubMed/NCBI | |
Martinez FO, Helming L and Gordon S: Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 27:451–483. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huber S, Hoffmann R, Muskens F and Voehringer D: Alternatively activated macrophages inhibit T-cell proliferation by STAT6-dependent expression of PD-L2. Blood. 116:3311–3320. 2010. View Article : Google Scholar : PubMed/NCBI | |
Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans RM, et al: STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. Immunity. 33:699–712. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Li W, Kaplan MH and Chang CH: Interleukin (IL)-4 inhibits IL-10 to promote IL-12 production by dendritic cells. J Exp Med. 201:1899–1903. 2005. View Article : Google Scholar : PubMed/NCBI | |
Furqan M, Mukhi N, Lee B and Liu D: Dysregulation of JAK-STAT pathway in hematological malignancies and JAK inhibitors for clinical application. Biomark Res. 1:52013. View Article : Google Scholar : PubMed/NCBI | |
Bito T, Sumita N, Ashida M, Budiyanto A, Ueda M, Ichihashi M, Tokura Y and Nishigori C: Inhibition of epidermal growth factor receptor and PI3K/Akt signaling suppresses cell proliferation and survival through regulation of Stat3 activation in human cutaneous squamous cell carcinoma. J Skin Cancer. 2011:8745712011. View Article : Google Scholar : PubMed/NCBI | |
Jeres A, Clemente MJ, Makishima H, Koskela H, Leblanc F, Peng Ng K, Olson T, Przychodzen B, Afable M, Gomez-Segui I, et al: STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood. 120:3048–3057. 2012. View Article : Google Scholar | |
Hazan-Halevy I, Harris D, Liu Z, Liu J, Li P, Chen X, Shanker S, Ferrajoli A, Keating MJ and Estrov Z: STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells. Blood. 115:2852–2863. 2010. View Article : Google Scholar | |
Ding BB, Yu JJ, Yu RY, Mendez LM, Shaknovich R, Zhang Y, Cattoretti G and Ye BH: Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-cell lymphomas. Blood. 111:1515–1523. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ritz O, Guiter C, Castellano F, Dorsch K, Melzner J, Jais JP, Dubois G, Gaulard P, Moller P and Leroy K: Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma. Blood. 114:1236–1242. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kis LL, Gerasimcik N, Salamon D, Persson EK, Nagy N, Klein G, Severinson E and Klein E: STAT6 signaling pathway activated by the cytokines IL-4 and IL-13 induces expression of the Epstein-Barr virus-encoded protein LMP-1 in absence of EBNA-2: implications for the type II EBV latent gene expression in Hodgkin lymphoma. Blood. 117:165–174. 2011. View Article : Google Scholar | |
Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C and Darnell JE Jr: STAT3 as an oncogene. Cell. 98:295–303. 1999. View Article : Google Scholar | |
Bowman T, Garcia R, Turkson J and Jove R: STATs in oncogenesis. Oncogene. 19:2474–2488. 2000. View Article : Google Scholar : PubMed/NCBI | |
Haura EB, Turkson J and Jove R: Mechanisms of disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat Clin Pract Oncol. 2:315–324. 2005. View Article : Google Scholar | |
Frank DA, Mahajan S and Ritz J: B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest. 100:3140–3148. 1997. View Article : Google Scholar | |
Mora LB, Buettner R, Seigne J, Diaz J, Ahmad N, Garcia R, Bowman T, Falcone R, Fairclough R, Cantor A, et al: Constitutive activation of STAT3 in human proSTATe tumors and cell lines: direct inhibition of STAT3 signaling induces apoptosis of proSTATe cancer cells. Cancer Res. 62:6659–6666. 2002.PubMed/NCBI | |
Diaz N, Minton S, Cox C, Bowman T, Gritsko T, Garcia R, Eweis I, Wloch M, Livingston S, Seijo E, et al: Activation of STAT3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res. 12:20–28. 2006. View Article : Google Scholar : PubMed/NCBI | |
Scholz A, Heinze S, Detjen KM, Peters M, Welzel M, Hauff P, Schirner M, Wiedenmann B and Rosewicz S: Activated signal transducer and activator of transcription 3 (STAT3) supports the malignant phenotype of human pancreatic cancer. Gastroenterology. 125:891–905. 2003. View Article : Google Scholar : PubMed/NCBI | |
Eifan AO, Furukido K, Dumitru A, Jacobson MR, Schmidt-Weber C, Banfield G, Durham SR and Nouri-Aria KT: Reduced T-bet in addition to enhanced STAT6 and GATA3 expressing T cells contribute to human allergen-induced late responses. Clin Exp Allergy. 42:891–900. 2012. | |
Hadjur S, Bruno L, Hertweck A, Cobb BS, Taylor B, Fisher AG and Merkenschlager M: IL4 blockade of inducible regulatory T cell differentiation: the role of Th2 cells, Gata3 and PU.1. Immunol Lett. 122:37–43. 2009. View Article : Google Scholar : PubMed/NCBI |