1
|
Gu YQ: Determination of amputation level
in ischaemic lower limbs. ANZ J Surg. 74:31–33. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yamamoto K, Kondo T, Suzuki S, et al:
Molecular evaluation of endothelial progenitor cells in patients
with ischemic limbs: therapeutic effect by stem cell
transplantation. Arterioscler Thromb Vasc Biol. 24:e192–e196. 2004.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Inaba S, Egashira K and Komori K:
Peripheral-blood or bone marrow mononuclear cells for therapeutic
angiogenesis? Lancet. 360:2083author reply 2084–2002.
|
4
|
Tateishi-Yuyama E, Matsubara H, Murohara
T, et al: Therapeutic angiogenesis for patients with limb ischaemia
by autologous transplantation of bone marrow cells: a pilot study
and a randomised controlled trial. Lancet. 360:427–435. 2002.
View Article : Google Scholar
|
5
|
Hershey JC, Baskin EP, Glass JD, Hartman
HA, Gilberto DB, Rogers IT and Cook JJ: Revascularization in the
rabbit hindlimb: dissociation between capillary sprouting and
arteriogenesis. Cardiovasc Res. 49:618–625. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Heil M, Ziegelhoeffer T, Mees B and
Schaper W: A different outlook on the role of bone marrow stem
cells in vascular growth: bone marrow delivers software not
hardware. Circ Res. 94:573–574. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chappell DC, Varner SE, Nerem RM, Medford
RM and Alexander RW: Oscillatory shear stress stimulates adhesion
molecule expression in cultured human endothelium. Circ Res.
82:532–539. 1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Coruh A and Yontar Y: Application of
split-thickness dermal grafts in deep partial- and full-thickness
burns: a new source of auto-skin grafting. J Burn Care Res.
33:e94–e100. 2012.PubMed/NCBI
|
9
|
Wlaschek M and Scharffetter-Kochanek K:
Oxidative stress in chronic venous leg ulcers. Wound Repair Regen.
13:452–461. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nishida S, Segawa T, Murai I and Nakagawa
S: Long-term melatonin administration reduces hyperinsulinemia and
improves the altered fatty-acid compositions in type 2 diabetic
rats via the restoration of Delta-5 desaturase activity. J Pineal
Res. 32:26–33. 2002. View Article : Google Scholar
|
11
|
Bickenbach JR and Chism E: Selection and
extended growth of murine epidermal stem cells in culture. Exp Cell
Res. 244:184–195. 1998. View Article : Google Scholar : PubMed/NCBI
|
12
|
Oshima H, Rochat A, Kedzia C, Kobayashi K
and Barrandon Y: Morphogenesis and renewal of hair follicles from
adult multipotent stem cells. Cell. 104:233–245. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Taylor G, Lehrer MS, Jensen PJ, Sun TT and
Lavker RM: Involvement of follicular stem cells in forming not only
the follicle but also the epidermis. Cell. 102:451–461. 2000.
View Article : Google Scholar
|
14
|
Fang LJ, Fu XB, Sun TZ, et al: An
experimental study on the differentiation of bone marrow
mesenchymal stem cells into vascular endothelial cells. Zhonghua
Shao Shang Za Zhi. 19:22–24. 2003.(In Chinese).
|
15
|
Bjornson CR, Rietze RL, Reynolds BA, Magli
MC and Vescovi AL: Turning brain into blood: a hematopoietic fate
adopted by adult neural stem cells in vivo. Science.
283:534–537. 1999. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mezey E, Chandross KJ, Harta G, Maki RA
and McKercher SR: Turning blood into brain: cells bearing neuronal
antigens generated in vivo from bone marrow. Science.
290:1779–1782. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Asahara T, Murohara T, Sullivan A, Silver
M, van der Zee R, Li T, Witzenbichler B, Schatteman G and Isner JM:
Isolation of putative progenitor endothelial cells for
angiogenesis. Science. 275:964–967. 1997. View Article : Google Scholar : PubMed/NCBI
|
18
|
Isner JM and Asahara T: Angiogenesis and
vasculogenesis as therapeutic strategies for postnatal
neovascularization. J Clin Invest. 103:1231–1236. 1999. View Article : Google Scholar : PubMed/NCBI
|
19
|
Subrammaniyan R, Amalorpavanathan J,
Shankar R, et al: Application of autologous bone marrow mononuclear
cells in six patients with advanced chronic critical limb ischemia
as a result of diabetes: our experience. Cytotherapy.
13:993–999
|
20
|
Yamanaka S: Strategies and new
developments in the generation of patient-specific pluripotent stem
cells. Cell Stem Cell. 1:39–49. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang Y, Huso DL, Harrington J, Kellner J,
Jeong DK, Turney J and McNiece IK: Outgrowth of a transformed cell
population derived from normal human BM mesenchymal stem cell
culture. Cytotherapy. 7:509–519. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen Y, Shi L, Zhang L, Li R, Liang J, Yu
W, Sun L, Yang X, Wang Y, Zhang Y and Shang Y: The molecular
mechanism governing the oncogenic potential of SOX2 in breast
cancer. J Biol Chem. 283:17969–17978. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Knoepfler PS: Deconstructing stem cell
tumorigenicity: a roadmap to safe regenerative medicine. Stem
Cells. 27:1050–1056. 2009. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Hayden EC: Stem cells: The growing pains
of pluripotency. Nature. 473:272–274. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yan J, Tie G, Xu TY, Cecchini K and
Messina LM: Mesenchymal stem cells as a treatment for peripheral
arterialdisease: current status and potential impact of type
IIdiabetes on their therapeuticefficacy. Stem Cell Rev. 9:360–372.
2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Williams AR and Hare JM: Mesenchymal stem
cells: biology, pathophysiology, translational findings, and
therapeutic implications for cardiac disease. Circ Res.
109:923–940. 2011. View Article : Google Scholar
|