1
|
Crisponi L, Uda M, Deiana M, et al: FOXL2
inactivation by a translocation 171 kb away: analysis of 500 kb of
chromosome 3 for candidate long-range regulatory sequences.
Genomics. 83:757–764. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
De Baere E, Beysen D, Oley C, et al: FOXL2
and BPES: mutational hotspots, phenotypic variability, and revision
of the genotype-phenotype correlation. Am J Hum Genet. 72:478–487.
2003. View
Article : Google Scholar : PubMed/NCBI
|
3
|
De Baere E, Dixon MJ, Small KW, et al:
Spectrum of FOXL2 gene mutations in
blepharophimosis-ptosis-epicanthus inversus (BPES) families
demonstrates a genotype - phenotype correlation. Hum Mol Genet.
10:1591–1600. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zlotogora J, Sagi M and Cohen T: The
blepharophimosis, ptosis, and epicanthus inversus syndrome:
delineation of two types. Am J Hum Genet. 35:1020–1027.
1983.PubMed/NCBI
|
5
|
Benayoun BA, Batista F, Auer J, et al:
Positive and negative feedback regulates the transcription factor
FOXL2 in response to cell stress: evidence for a regulatory
imbalance induced by disease-causing mutations. Hum Mol Genet.
18:632–644. 2009. View Article : Google Scholar
|
6
|
Pisarska MD, Kuo FT, Bentsi-Barnes IK,
Khan S and Barlow GM: LATS1 phosphorylates forkhead L2 and
regulates its transcriptional activity. Am J Physiol Endocrinol
Metab. 299:E101–E109. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pisarska MD, Barlow G and Kuo FT:
Minireview: roles of the forkhead transcription factor FOXL2 in
granulosa cell biology and pathology. Endocrinology. 152:1199–1208.
2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Benayoun BA, Anttonen M, L’Hôte D, et al:
Adult ovarian granulosa cell tumor transcriptomics: prevalence of
FOXL2 target genes misregulation gives insights into the pathogenic
mechanism of the p. Cys134Trp somatic mutation. Oncogene.
32:2739–2746. 2013. View Article : Google Scholar
|
9
|
Maes OC, Chertkow HM, Wang E and Schipper
HM: MicroRNA: Implications for Alzheimer disease and other human
CNS disorders. Curr Genomics. 10:154–168. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Xu J, Li Y, Wang F, et al: Suppressed
miR-424 expression via upregulation of target gene Chk1 contributes
to the progression of cervical cancer. Oncogene. 32:976–987. 2013.
View Article : Google Scholar
|
11
|
Farazi TA, Hoell JI, Morozov P and Tuschl
T: MicroRNAs in human cancer. Adv Exp Med Biol. 774:1–20. 2013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Friedman RC, Farh KK, Burge CB and Bartel
DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome
Res. 19:92–105. 2009. View Article : Google Scholar :
|
13
|
Lee H, Park CS, Deftereos G, et al:
MicroRNA expression in ovarian carcinoma and its correlation with
clinicopathological features. World J Surg Oncol. 10:1742012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Corrêa FJ, Tavares AB, Pereira RW and
Abrão MS: A new FOXL2 gene mutation in a woman with premature
ovarian failure and sporadic blepharophimosis-ptosis-epicanthus
inversus syndrome. Fertil Steril. 93:e3–e6. 2010.
|
15
|
Kim JH, Yoon S, Park M, et al:
Differential apoptotic activities of wild-type FOXL2 and the
adult-type granulosa cell tumor-associated mutant FOXL2 (C134W).
Oncogene. 30:1653–1663. 2011. View Article : Google Scholar
|
16
|
Kalfa N, Fellous M, Boizet-Bonhoure B, et
al: Aberrant expression of ovary determining gene FOXL2 in the
testis and juvenile granulosa cell tumor in children. J Urol.
180:1810–1813. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kalfa N, Philibert P, Patte C, et al:
Extinction of FOXL2 expression in aggressive ovarian granulosa cell
tumors in children. Fertil Steril. 87:896–901. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
D’Sa-Eipper C and Chinnadurai G:
Functional dissection of Bfl-1, a Bcl-2 homolog: anti-apoptosis,
oncogene-cooperation and cell proliferation activities. Oncogene.
16:3105–3114. 1998. View Article : Google Scholar
|
19
|
Wu MX, Ao Z, Prasad KV, Wu R and
Schlossman SF: IEX-1L, an apoptosis inhibitor involved in
NF-kappaB-mediated cell survival. Science. 281:998–1001. 1998.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Bentsi-Barnes IK, Kuo FT, Barlow GM and
Pisarska MD: Human forkhead L2 represses key genes in granulosa
cell differentiation including aromatase, P450scc, and cyclin D2.
Fertil Steril. 94:353–356. 2010. View Article : Google Scholar :
|
21
|
Zhang N, Wang X, Huo Q, et al:
MicroRNA-30a suppresses breast tumor growth and metastasis by
targeting metadherin. Oncogene. 33:3119–3128. 2014. View Article : Google Scholar
|
22
|
Jiang BY, Zhang XC, Su J, et al: BCL11A
overexpression predicts survival and relapse in non-small cell lung
cancer and is modulated by microRNA-30a and gene amplification. Mol
Cancer. 12:612013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhong M, Bian Z and Wu Z: miR-30a
suppresses cell migration and invasion through downregulation of
PIK3CD in colorectal carcinoma. Cell Physiol Biochem. 31:209–218.
2013. View Article : Google Scholar : PubMed/NCBI
|