Involvement of long non-coding RNA in colorectal cancer: From benchtop to bedside (Review)
- Authors:
- Le‑Chi Ye
- De‑Xiang Zhu
- Jun‑Jun Qiu
- Jianmin Xu
- Ye Wei
-
Affiliations: Department of Oncological Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China, Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P.R. China - Published online on: January 5, 2015 https://doi.org/10.3892/ol.2015.2846
- Pages: 1039-1045
This article is mentioned in:
Abstract
Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI | |
Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kapranov P, Cheng J, Dike S, et al: RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 316:1484–1488. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gutschner T and Diederichs S: The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 9:703–719. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tsang WP, Ng EK, Ng SS, et al: Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 31:350–358. 2010. View Article : Google Scholar | |
Yoshimizu T, Miroglio A, Ripoche MA, et al: The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci USA. 105:12417–12422. 2008. View Article : Google Scholar : PubMed/NCBI | |
Moulton T, Crenshaw T, Hao Y, et al: Epigenetic lesions at the H19 locus in Wilms’ tumour patients. Nat Genet. 7:440–447. 1994. View Article : Google Scholar : PubMed/NCBI | |
Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh CL and Feinberg AP: Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res. 62:6442–6446. 2002.PubMed/NCBI | |
Fellig Y, Ariel I, Ohana P, et al: H19 expression in hepatic metastases from a range of human carcinomas. J Clin Pathol. 58:1064–1068. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ohana P, Schachter P, Ayesh B, et al: Regulatory sequences of H19 and IGF2 genes in DNA-based therapy of colorectal rat liver metastases. J Gene Med. 7:366–374. 2005. View Article : Google Scholar | |
Sorin V, Ohana P, Mizrahi A, et al: Regional therapy with DTA-H19 vector suppresses growth of colon adenocarcinoma metastases in the rat liver. Int J Oncol. 39:1407–1412. 2011.PubMed/NCBI | |
Gupta RA, Shah N, Wang KC, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pádua Alves C, Fonseca AS, Muys BR, et al: Brief report: The lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines. Stem cells. 31:2827–2832. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kogo R, Shimamura T, Mimori K, et al: Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 71:6320–6326. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gutschner T, Hämmerle M, Eissmann M, et al: The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73:1180–1189. 2013. View Article : Google Scholar : | |
Chang JL, Li ZG, Wang XY and Yang MH: Detection of p53, MALAT1, ki-67 and β-catenin mRNA expression and its significance in molecular diagnosis of colorectal carcinoma. World Chinese J Digestol. 16:3849–3854. 2008. | |
Xu C, Yang M, Tian J, Wang X and Li Z: MALAT-1: a long non-coding RNA and its important 3′ end functional motif in colorectal cancer metastasis. Int J Oncol. 39:169–175. 2011.PubMed/NCBI | |
Ji Q, Liu X, Fu X, et al: Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One. 8:e787002013. View Article : Google Scholar | |
Panzitt K, Tschernatsch MM, Guelly C, et al: Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 132:330–342. 2007. View Article : Google Scholar : PubMed/NCBI | |
Matouk IJ, Abbasi I, Hochberg A, Galun E, Dweik H and Akkawi M: Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur J Gastroenterol Hepatol. 21:688–692. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Ma H and Zhou D: Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. Biomed Res Int. 2013:1361062013. View Article : Google Scholar : PubMed/NCBI | |
Miyoshi N, Wagatsuma H, Wakana S, et al: Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells. 5:211–220. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhou Y, Mehta KR, et al: A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 88:5119–5126. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Zhang X and Klibanski A: MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol. 48:R45–R53. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, et al: Colon cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues. Int J Cancer. 130:1598–1606. 2012. View Article : Google Scholar | |
Kam Y, Rubinstein A, Naik S, et al: Detection of a long non-coding RNA (CCAT1) in living cells and human adenocarcinoma of colon tissues using FIT-PNA molecular beacons. Cancer Lett. 352:90–96. 2014. View Article : Google Scholar | |
Ling H, Spizzo R, Atlasi Y, et al: CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 23:1446–1461. 2013. View Article : Google Scholar : PubMed/NCBI | |
Graham LD, Pedersen SK, Brown GS, et al: Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes Cancer. 2:829–840. 2011. View Article : Google Scholar | |
Ellis BC, Molloy PL and Graham LD: CRNDE: A long non-coding RNA Involved in CanceR, Neurobiology, and DEvelopment. Front Genet. 3:2702012. View Article : Google Scholar : PubMed/NCBI | |
Ellis BC, Graham LD and Molloy PL: CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim Biophys Acta. 1843:372–386. 2014. View Article : Google Scholar | |
Liu Q, Huang J, Zhou N, et al: LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res. 41:4976–4987. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pibouin L, Villaudy J, Ferbus D, et al: Cloning of the mRNA of overexpression in colon carcinoma-1: a sequence overexpressed in a subset of colon carcinomas. Cancer Genet Cytogenet. 133:55–60. 2002. View Article : Google Scholar : PubMed/NCBI | |
Peng JC, Shen J and Ran ZH: Transcribed ultraconserved region in human cancers. RNA Biol. 10:1771–1777. 2013. View Article : Google Scholar | |
Scaruffi P: The transcribed-ultraconserved regions: a novel class of long noncoding RNAs involved in cancer susceptibility. ScientificWorldJournal. 11:340–352. 2011. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Liu CG, Ferracin M, et al: Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell. 12:215–229. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sana J, Hankeova S, Svoboda M, Kiss I, Vyzula R and Slaby O: Expression levels of transcribed ultraconserved regions uc.73 and uc388 are altered in colorectal cancer. Oncology. 82:114–118. 2012. View Article : Google Scholar | |
Wojcik SE, Rossi S, Shimizu M, et al: Non-coding RNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer. Carcinogenesis. 31:208–215. 2010. View Article : Google Scholar : | |
Ng SY, Gunning P, Eddy R, et al: Evolution of the functional human beta-actin gene and its multi-pseudogene family: conservation of noncoding regions and chromosomal dispersion of pseudogenes. Mol Cell Biol. 5:2720–2732. 1985.PubMed/NCBI | |
Poliseno L: Pseudogenes: newly discovered players in human cancer. Sci Signal. 5:re52012.PubMed/NCBI | |
Wezel F, Pearson J, Kirkwood LA and Southgate J: Differential expression of Oct4 variants and pseudogenes in normal urothelium and urothelial cancer. Am J Pathol. 183:1128–1136. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kastler S, Honold L, Luedeke M, et al: POU5F1P1, a putative cancer susceptibility gene, is overexpressed in prostatic carcinoma. Prostate. 70:666–674. 2010. | |
Panagopoulos I, Möller E, Collin A and Mertens F: The POU5F1P1 pseudogene encodes a putative protein similar to POU5F1 isoform 1. Oncol Rep. 20:1029–1033. 2008.PubMed/NCBI | |
Ali A, Saluja SS, Hajela K, Mishra PK and Rizvi MA: Mutational and expressional analyses of PTEN gene in colorectal cancer from Northern India. Mol Carcinog. 53(Suppl 1): E45–E52. 2014. View Article : Google Scholar | |
Johnsson P, Ackley A, Vidarsdottir L, et al: A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol. 20:440–446. 2013. View Article : Google Scholar : PubMed/NCBI | |
Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ and Pandolfi PP: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 465:1033–1038. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lazar V and Garcia JG: A single human myosin light chain kinase gene (MLCK; MYLK). Genomics. 57:256–267. 1999. View Article : Google Scholar : PubMed/NCBI | |
Han YJ, Ma SF, Yourek G, Park YD and Garcia JG: A transcribed pseudogene of MYLK promotes cell proliferation. FASEB J. 25:2305–2312. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rack KA, Delabesse E, Radford-Weiss I, et al: Simultaneous detection of MYC, BVR1, and PVT1 translocations in lymphoid malignancies by fluorescence in situ hybridization. Genes Chromosomes Cancer. 23:220–226. 1998. View Article : Google Scholar : PubMed/NCBI | |
Guan Y, Kuo WL, Stilwell JL, et al: Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin Cancer Res. 13:5745–5755. 2007. View Article : Google Scholar : PubMed/NCBI | |
Takahashi Y, Sawada G, Kurashige J, et al: Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers. Br J Cancer. 110:164–171. 2014. View Article : Google Scholar : | |
Barsotti AM, Beckerman R, Laptenko O, Huppi K, Caplen NJ and Prives C: p53-Dependent induction of PVT1 and miR-1204. J Biol Chem. 287:2509–2519. 2012. View Article : Google Scholar : | |
Nakagawa H, Chadwick RB, Peltomaki P, Plass C, Nakamura Y and de La Chapelle A: Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer. Proc Natl Acad Sci USA. 98:591–596. 2001. View Article : Google Scholar : | |
Murakami K, Oshimura M and Kugoh H: Suggestive evidence for chromosomal localization of non-coding RNA from imprinted LIT1. J Hum Genet. 52:926–933. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mitsuya K, Meguro M, Lee MP, et al: LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet. 8:1209–1217. 1999. View Article : Google Scholar : PubMed/NCBI | |
Nakano S, Murakami K, Meguro M, et al: Expression profile of LIT1/KCNQ1OT1 and epigenetic status at the KvDMR1 in colorectal cancers. Cancer Sci. 97:1147–1154. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhai H, Fesler A, Schee K, Fodstad O, Flatmark K and Ju J: Clinical significance of long intergenic noncoding RNA-p21 in colorectal cancer. Clin Colorectal Cancer. 12:261–266. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Li Z, Zhao Q, et al: LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/β-catenin signaling pathway. Oncol Rep. 31:1839–1845. 2014.PubMed/NCBI | |
Yang F, Zhang H, Mei Y and Wu M: Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol Cell. 53:88–100. 2014. View Article : Google Scholar | |
Yu M, Ohira M, Li Y, et al: High expression of ncRAN, a novel non-coding RNA mapped to chromosome 17q25.1, is associated with poor prognosis in neuroblastoma. Int J Oncol. 34:931–938. 2009.PubMed/NCBI | |
Qi P, Xu MD, Ni SJ, et al: Down-regulation of ncRAN, a long non-coding RNA, contributes to colorectal cancer cell migration and invasion and predicts poor overall survival for colorectal cancer patients. Mol Carcinog. 2014. View Article : Google Scholar | |
Yang L, Lin C, Jin C, et al: lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 500:598–602. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ge X, Chen Y, Liao X, et al: Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Med Oncol. 30:5882013. View Article : Google Scholar : PubMed/NCBI | |
Meyer LR, Zweig AS, Hinrichs AS, et al: The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res. 41:D64–D69. 2013. View Article : Google Scholar : | |
Chung S, Nakagawa H, Uemura M, et al: Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci. 102:245–252. 2011. View Article : Google Scholar | |
Li L, Sun R, Liang Y, et al: Association between polymorphisms in long non-coding RNA PRNCR1 in 8q24 and risk of colorectal cancer. J Exp Clin Cancer Res. 32:1042013. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Huo XS, Yuan SX, et al: Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell. 49:1083–1096. 2013. View Article : Google Scholar : PubMed/NCBI | |
Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Li X, Xie X, Zhao L and Chen W: UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 582:1919–1927. 2008. View Article : Google Scholar : PubMed/NCBI |