1
|
The national cancer registry. http://onkologia.org.pl/[(In Polish)].
Accessed. March 15–2014.
|
2
|
Bień S, Kamiński B, Żyłka S, Meżyk R and
Piasta Z: Evolution of the epidemiology and clinical
characteristics of larynx and hypopharynx carcinoma in poland from
1991 to 2001. Eur Arch Otorhinolaryngol. 1:S39–S46. 2008.
View Article : Google Scholar
|
3
|
Wu CT and Morris JR: Genes, genetics and
epigenetics: a correspondence. Sciences. 293:1103–1105. 2001.
View Article : Google Scholar
|
4
|
Wong TS, Gao W, Li ZH, Chan JY and Ho WK:
Epigenetic dysregulation in laryngeal squamous cell carcinoma. J
Oncol. 2012:7394612012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jabłońska J and Jesionek-Kupnicka D:
Zmiany epigenetyczne w nowotworach. Onkol Pol. 7:181–185. 2004.[(In
Polish)].
|
6
|
Severin PM, Zou X, Gaub HE and Schulten K:
Cytosine methylation alters dna mechanical properties. Nucleic
Acids Res. 39:8740–8751. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Baylin SB and Herman JG: Dna
hypermethylation in tumorigenesis: epigenetics joins genetics.
Trends Genet. 16:168–174. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chang HW, Ling GS, Wei WI and Yuen AP:
Smoking and drinking can induce p15 methylation in the upper
aerodigestive tract of healthy individuals and patients with head
and neck squamous cell carcinoma. Cancer. 101:125–132. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
van Engeland M, Weijenberg MP, Roemen GM,
Brink M, de Bruïne AP, Goldbohm RA, van den Brandt PA, Baylin SB,
de Goeij AF and Herman JG: Effects of dietary folate and alcohol
intake on promoter methylation in sporadic colorectal cancer: the
netherlands cohort study on diet and cancer. Cancer Res.
63:3133–3137. 2003.PubMed/NCBI
|
10
|
Fleuriel C, Touka M, Boulay G, Guérardel
C, Rood BR and Leprince D: Hic1 (hypermethylated in cancer 1)
epigenetic silencing in tumors. Int J Biochem Cell Biol. 41:26–33.
2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Peralta R, Valdivia A, Alvarado-Cabrero I,
Gallegos F, Apresa T, Hernández D, Mendoza M, Romero P, Paniagua L,
Ibáñez M, Cabrera L and Salcedo M: Correlation between expression
of cellular retinol-binding protein 1 and its methylation status in
larynx cancer. J Clin Pathol. 65:46–50. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bazan V, Zanna I, Migliavacca M,
Sanz-Casla MT, Maestro ML, Corsale S, Macaluso M, Dardanoni G,
Restivo S, Quintela PL, Bernaldez R, Salerno S, Morello V, Tomasino
RM, Gebbia N and Russo A: Prognostic significance of p16ink4a
alterations and 9p21 loss of heterozygosity in locally advanced
laryngeal squamous cell carcinoma. J Cell Physiol. 192:286–293.
2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kong WJ, Zhang S, Guo C, Zhang S, Wang Y
and Zhang D: Methylation-associated silencing of death-associated
protein kinase gene in laryngeal squamous cell cancer.
Laryngoscope. 115:1395–1401. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Paluszczak J, Misiak P, Wierzbicka M,
Woźniak A and Baer-Dubowska W: Frequent hypermethylation of DAPK,
RARbeta, MGMT, RASSF1A and FHIT in laryngeal squamous cell
carcinomas and adjacent normal mucosa. Oral Oncol. 47:104–107.
2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang J, Chen H, Fu S, Xu ZM, Sun KL and Fu
WN: The involvement of chd5 hypermethylation in laryngeal squamous
cell carcinoma. Oral Oncol. 47:601–608. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Smigiel R, Sasiadek M, Krecicki T, Ramsey
D, Jagielski J and Blin N: Inactivation of the cyclin-dependent
kinase inhibitor 2a (cdkn2a) gene in squamous cell carcinoma of the
larynx. Mol Carcinog. 39:147–154. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Olasz J, Juhász A, Remenár E, Engi H, Bak
M, Csuka O and Kásler M: Rar beta2 suppression in head and neck
squamous cell carcinoma correlates with site, histology and age.
Oncol Rep. 18:105–112. 2007.PubMed/NCBI
|
19
|
Temam S, Bénard J, Dugas C, Trassard M,
Gormally E, Soria JC, Faivre S, Luboinski B, Marandas P, Hainaut P,
Lenoir G, Mao L and Janot F: Molecular detection of early-stage
laryngopharyngeal squamous cell carcinomas. Clin Cancer Res.
11:2547–2551. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen WY, Wang DH, Yen RC, Luo J, Gu W and
Baylin SB: Tumor suppressor hic1 directly regulates sirt1 to
modulate p53-dependent dna-damage responses. Cell. 123:437–448.
2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cohen HY, Miller C, Bitterman KJ, Wall NR,
Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R and Sinclair
DA: Calorie restriction promotes mammalian cell survival by
inducing the sirt1 deacetylase. Science. 305:390–392. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Vaquero A, Scher M, Erdjument-Bromage H,
Tempst P, Serrano L and Reinberg D: Sirt1 regulates the histone
methyl-transferase suv39h1 during heterochromatin formation.
Nature. 450:440–444. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kelly KF and Daniel JM: Poz for
effect-poz-zf transcription factors in cancer and development.
Trends Cell Biol. 16:578–587. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Briones VR, Chen S, Riegel AT and
Lechleider RJ: Mechanism of fibroblast growth factor-binding
protein 1 repression by tgf-beta. Biochem Biophys Res Commun.
345:595–601. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tassi E, Henke RT, Bowden ET, Swift MR,
Kodack DP, Kuo AH, Maitra A and Wellstein A: Expression of a
fibroblast growth factor-binding protein during the development of
adenocarcinoma of the pancreas and colon. Cancer Res. 66:1191–1198.
2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Eguchi K, Kanai Y, Kobayashi K and
Hirohashi S: Dna hypermethylation at the d17s5 locus in non-small
cell lung cancers: its association with smoking history. Cancer
Res. 57:4913–4915. 1997.PubMed/NCBI
|
27
|
Kanai Y, Hui AM, Sun L, Ushijima S,
Sakamoto M, Tsuda H and Hirohashi S: Dna hypermethylation at the
d17s5 locus and reduced hic-1 mrna expression are associated with
hepatocarcinogenesis. Hepatology. 29:703–709. 1999. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kanai YI, Ushijima S, Ochiai A, Eguchi K,
Hui A and Hirohashi S: Dna hypermethylation at the d17s5 locus is
associated with gastric carcinogenesis. Cancer Lett. 122:135–141.
1998. View Article : Google Scholar : PubMed/NCBI
|
29
|
Nicoll G, Crichton DN, McDowell HE,
Kernohan N, Hupp TR and Thompson AM: Expression of the
hypermethylated in cancer gene (hic-1) is associated with good
outcome in human breast cancer. Br J Cancer. 85:1878–1882. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Hayashi M, Tokuchi Y, Hashimoto T, Hayashi
S, Nishida K, Ishikawa Y, Nakagawa K, Tsuchiya S, Okumura S and
Tsuchiya E: reduced hic-1 gene expression in non-small cell lung
cancer and its clinical significance. Anticancer Res. 21:535–540.
2001.PubMed/NCBI
|
31
|
Brieger J, Mann SA, Pongsapich W,
Koutsimpelas D, Fruth K and Mann WJ: Pharmacological genome
demethylation increases radiosensitivity of head and neck squamous
carcinoma cells. Int J Mol Med. 29:505–509. 2012.PubMed/NCBI
|
32
|
Zheng J, Wang J, Sun X, et al: HIC1
modulates prostate cancer progression by epigenetic modification.
Clin Cancer Res. 19:1400–1410. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Stephen JK, Chen KM, Shah V, Havard S,
Kapke A, Lu M, Benninger MS and Worsham MJ: Dna hypermethylation
markers of poor outcome in laryngeal cancer. Clin Epigenetics.
1:61–69. 2010. View Article : Google Scholar : PubMed/NCBI
|