1
|
Cho JY: Molecular diagnosis for
personalized target therapy in gastric cancer. J Gastric Cancer.
13:129–135. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sousa JF, Ham AJ, Whitwell C, Nam KT, Lee
HJ, Yang HK, et al: Proteomic profiling of paraffin-embedded
samples identifies metaplasia-specific and early-stage gastric
cancer biomarkers. Am J Pathol. 181:1560–1572. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cui J, Xi H, Cai A, Bian S, Wei B and Chen
L: Decreased expression of Sox7 correlates with the upregulation of
the Wnt/β-catenin signaling pathway and the poor survival of
gastric cancer patients. Int J Mol Med. 34:197–204. 2014.PubMed/NCBI
|
4
|
Oo HZ, Sentani K, Sakamoto N, Anami K,
Naito Y, Uraoka N, Oshima T, Yanagihara K, Oue N and Yasui W:
Overexpression of ZDHHC14 promotes migration and invasion of
scirrhous type gastric cancer. Oncol Rep. 32:403–410.
2014.PubMed/NCBI
|
5
|
Lu F, Xue JX, Hu YC, Gan L, Shi Y, Yang HS
and Wei YQ: CARP is a potential tumor suppressor in gastric
carcinoma and a single-nucleotide polymorphism in CARP gene might
increase the risk of gastric carcinoma. PLoS One. 9:e977432014.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Li Z, Chang X, Dai D, Deng P and Sun Q:
RASSF10 is an epigenetically silenced tumor suppressor in gastric
cancer. Oncol Rep. 31:1661–1668. 2014.PubMed/NCBI
|
7
|
Legrand D: Lactoferrin, a key molecule in
immune and inflammatory processes. Biochem Cell Biol. 90:252–268.
2012. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Legrand D, Pierce A, Elass E, Carpentier
M, Mariller C and Mazurier J: Lactoferrin structure and functions.
Adv Exp Med Biol. 606:163–194. 2008.PubMed/NCBI
|
9
|
Gibbons JA, Kanwar RK and Kanwar JR:
Lactoferrin and cancer in different cancer models. Front Biosci
(Schol Ed). 3:1080–1088. 2011. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Bezault J, Bhimani R, Wiprovnick J and
Furmanski P: Human lactoferrin inhibits growth of solid tumors and
development of experimental metastases in mice. Cancer Res.
54:2310–2312. 1994.PubMed/NCBI
|
11
|
Varadhachary A, Wolf JS, Petrak K,
O'Malley BW Jr, Spadaro M, Curcio C, Forni G and Pericle F: Oral
lactoferrin inhibits growth of established tumors and potentiates
conventional chemotherapy. Int J Cancer. 111:398–403. 2004.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Tsuda H, Sekine K, Nakamura J, Ushida Y,
Kuhara T, et al: Inhibition of azoxymethane initiated colon tumor
and aberrant crypt foci development by bovine lactoferrin
administration in F344 rats. Adv Exp Med Biol. 443:273–284.
1998.PubMed/NCBI
|
13
|
Sekine K, Watanabe E, Nakamura J, Takasuka
N, et al: Inhibition of azoxymethane-initiated colon tumor by
bovine lactoferrin administration in F344 rats. Jpn J Cancer Res.
88:523–526. 1997. View Article : Google Scholar : PubMed/NCBI
|
14
|
Matsuda Y, Saoo K, Hosokawa K, Yamakawa K,
Yokohira M, Zeng Y, Takeuchi H and Imaida K: Post-initiation
chemopreventive effects of dietary bovine lactoferrin on
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung
tumorigenesis in female A/J mice. Cancer Lett. 246:41–46. 2007.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Li WY, Li QW, Han ZS, Jiang ZL, Yang H, Li
J and Zhang XB: Growth suppression effects of recombinant
adenovirus expressing human lactoferrin on cervical cancer in vitro
and in vivo. Cancer Biother Radiopharm. 26:477–483. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Nakajima M, Shinoda I, Samejima Y,
Miyauchi H, Fukuwatari Y and Hayasawa H: Lactoferrin as a
suppressor of cell migration of gastrointestinal cell lines. J Cell
Physiol. 170:101–105. 1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhou Y, Zeng Z, Zhang W, Xiong W, Wu M,
Tan Y, Yi W, Xiao L, Li X, Huang C, et al: Lactotransferrin: a
candidate tumor suppressor - Deficient expression in human
nasopharyngeal carcinoma and inhibition of NPC cell proliferation
by modulating the mitogen-activated protein kinase pathway. Int J
Cancer. 123:2065–2072. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Pfaffl MW: A new mathematical model for
relative quantification in real-time RT-PCR. Nucleic Acids Res.
29:e452001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Deng M, Zhang W, Tang H, Ye Q, Liao Q,
Zhou Y, Wu M, Xiong W, Zheng Y, Guo X, et al: Lactotransferrin acts
as a tumor suppressor in nasopharyngeal carcinoma by repressing AKT
through multiple mechanisms. Oncogene. 32:4273–4283. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ward PP, Paz E and Conneely OM:
Multifunctional roles of lactoferrin: a critical overview. Cell Mol
Life Sci. 62:2540–2548. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Rodrigues L, Teixeira J, Schmitt F,
Paulsson M and Månsson HL: Lactoferrin and cancer disease
prevention. Crit Rev Food Sci Nutr. 49:203–217. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shaheduzzaman S, Vishwanath A, Furusato B,
Cullen J, Chen Y, Bañez L, Nau M, Ravindranath L, Kim KH, Mohammed
A, et al: Silencing of Lactotransferrin expression by methylation
in prostate cancer progression. Cancer Biol Ther. 6:1088–1095.
2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Iijima H, Tomizawa Y, Iwasaki Y, Sato K,
Sunaga N, Dobashi K, Saito R, Nakajima T, Minna JD and Mori M:
Genetic and epigenetic inactivation of LTF gene at 3p21.3 in lung
cancers. Int J Cancer. 118:797–801. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yi HM, Li H, Peng D, Zhang HJ, Wang L,
Zhao M, Yao KT and Ren CP: Genetic and epigenetic alterations of
LTF at 3p21.3 in nasopharyngeal carcinoma. Oncol Res. 16:261–272.
2006.PubMed/NCBI
|
26
|
Campbell T, Skilton RA, Coombes RC,
Shousha S, Graham MD and Luqmani YA: Isolation of a lactoferrin
cDNA clone and its expression in human breast cancer. Br J Cancer.
65:19–26. 1992. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kholodnyuk ID, Kozireva S, Kost-Alimova M,
Kashuba V, Klein G and Imreh S: Down regulation of 3p genes, LTF,
SLC38A3 and DRR1, upon growth of human chromosome 3-mouse
fibrosarcoma hybrids in severe combined immunodeficiency mice. Int
J Cancer. 119:99–107. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yang Y, Li J, Szeles A, Imreh MP,
Kost-Alimova M, Kiss H, Kholodnyuk I, Fedorova L, Darai E, Klein G
and Imreh S: Consistent downregulation of human lactoferrin gene,
in the common eliminated region 1 on 3p21.3, following tumor growth
in severe combined immunodeficient (SCID) mice. Cancer Lett.
191:155–164. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Huang P, Han J and Hui L: MAPK signaling
in inflammation-associated cancer development. Protein Cell.
1:218–226. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wagner EF and Nebreda AR: Signal
integration by JNK and p38 MAPK pathways in cancer development. Nat
Rev Cancer. 9:537–549. 2009. View
Article : Google Scholar : PubMed/NCBI
|
31
|
You H, Lei P and Andreadis ST: JNK is a
novel regulator of intercellular adhesion. Tissue Barriers.
1:e268452013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yuan F, Xu Z, Yang M, Wei Q, Zhang Y, Yu
J, Zhi Y, Liu Y, Chen Z and Yang J: Overexpressed DNA polymerase
iota regulated by JNK/c-Jun contributes to hypermutagenesis in
bladder cancer. PLoS One. 8:e693172013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Okada M, Shibuya K, Sato A, Seino S,
Watanabe E, Suzuki S, Seino M and Kitanaka C: Specific role of JNK
in the maintenance of the tumor-initiating capacity of A549 human
non-small cell lung cancer cells. Oncol Rep. 30:1957–1964.
2013.PubMed/NCBI
|
34
|
Suzuki K and Matsubara H: Recent advances
in p53 research and cancer treatment. J Biomed Biotechnol.
2011:9783122011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jiang L, Chang J, Zhang Q, Sun L and Qiu
X: MicroRNA hsa-miR-125a-3p activates p53 and induces apoptosis in
lung cancer cells. Cancer Invest. 31:538–544. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Marcel V, Ghayad SE, Belin S, Therizols G,
Morel AP, Solano-Gonzàlez E, Vendrell JA, Hacot S, Mertani HC,
Albaret MA, et al: p53 acts as a safeguard of translational control
by regulating fibrillarin and rRNA methylation in cancer. Cancer
Cell. 24:318–330. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang Y, Zhang YX, Kong CZ, Zhang Z and Zhu
YY: Loss of P53 facilitates invasion and metastasis of prostate
cancer cells. Mol Cell Biochem. 384:121–127. 2013. View Article : Google Scholar : PubMed/NCBI
|