1
|
Hsieh MH, Meng MV, Walsh TJ, Matthay KK
and Baskin LS: Increasing incidence of neuroblastoma and
potentially higher associated mortality of children from
nonmetropolitan areas: analysis of the surveillance, epidemiology,
and end results database. J Pediatr Hematol Oncol. 31:942–946.
2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Brodeur GM: Neuroblastoma: biological
insights into a clinical enigma. Nat Rev Cancer. 3:203–216. 2003.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Baker CV and Bronner-Fraser M: The origins
of the neural crest. Part I: embryonic induction. Mech Dev.
69:3–11. 1997. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mayor R and Theveneau E: The neural crest.
Development. 140:2247–2251. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Anderson DJ: Molecular control of cell
fate in the neural crest: the sympathoadrenal lineage. Annu Rev
Neurosci. 16:129–158. 1993. View Article : Google Scholar : PubMed/NCBI
|
6
|
Unsicker K: The chromaffin cell: paradigm
in cell, developmental and growth factor biology. J Anat.
183:207–221. 1993.PubMed/NCBI
|
7
|
Sano H, Bonadio J, Gerbing RB, et al:
International neuroblastoma pathology classification adds
independent prognostic information beyond the prognostic
contribution of age. Eur J Cancer. 42:1113–1119. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shimada H, Ambros IM, Dehner LP, et al:
The International Neuroblastoma Pathology Classification (the
Shimada system). Cancer. 86:364–372. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tsarovina K, Schellenberger J, Schneider C
and Rohrer H: Progenitor cell maintenance and neurogenesis in
sympathetic ganglia involves Notch signaling. Mol Cell Neurosci.
37:20–31. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Shah NM, Groves AK and Anderson DJ:
Alternative neural crest cell fates are instructively promoted by
TGFbeta superfamily members. Cell. 85:331–343. 1996. View Article : Google Scholar : PubMed/NCBI
|
11
|
Reissmann E, Ernsberger U, Francis-West
PH, Rueger D, Brickell PM and Rohrer H: Involvement of bone
morphogenetic protein-4 and bone morphogenetic protein-7 in the
differentiation of the adrenergic phenotype in developing
sympathetic neurons. Development. 122:2079–2088. 1996.PubMed/NCBI
|
12
|
Vincentz JW, VanDusen NJ, Fleming AB, et
al: A Phox2- and Hand2-dependent Hand1 cis-regulatory element
reveals a unique gene dosage requirement for Hand2 during
sympathetic neurogenesis. J Neurosci. 32:2110–2120. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Hirsch MR, Tiveron MC, Guillemot F, Brunet
JF and Goridis C: Control of noradrenergic differentiation and
Phox2a expression by MASH1 in the central and peripheral nervous
system. Development. 125:599–608. 1998.PubMed/NCBI
|
14
|
Lo L, Tiveron MC and Anderson DJ: MASH1
activates expression of the paired homeodomain transcription factor
Phox2a, and couples pan-neuronal and subtype-specific components of
autonomic neuronal identity. Development. 125:609–620.
1998.PubMed/NCBI
|
15
|
Stanke M, Junghans D, Geissen M, Goridis
C, Ernsberger U and Rohrer H: The Phox2 homeodomain proteins are
sufficient to promote the development of sympathetic neurons.
Development. 126:4087–4094. 1999.PubMed/NCBI
|
16
|
Tsarovina K, Pattyn A, Stubbusch J, et al:
Essential role of Gata transcription factors in sympathetic neuron
development. Development. 131:4775–4786. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pattyn A, Morin X, Cremer H, Goridis C and
Brunet JF: The homeobox gene Phox2b is essential for the
development of autonomic neural crest derivatives. Nature.
399:366–370. 1999. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Lim KC, Lakshmanan G, Crawford SE, Gu Y,
Grosveld F and Engel JD: Gata3 loss leads to embryonic lethality
due to noradrenaline deficiency of the sympathetic nervous system.
Nat Genet. 25:209–212. 2000. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Schneider C, Wicht H, Enderich J, Wegner M
and Rohrer H: Bone morphogenetic proteins are required in vivo for
the generation of sympathetic neurons. Neuron. 24:861–870. 1999.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Dyer MA: Mouse models of childhood cancer
of the nervous system. J Clin Pathol. 57:561–576. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Seeger RC, Brodeur GM, Sather H, et al:
Association of multiple copies of the N-myc oncogene with rapid
progression of neuroblastomas. N Engl J Med. 313:1111–1116. 1985.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Maris JM and Matthay KK: Molecular biology
of neuroblastoma. J Clin Oncol. 17:2264–2279. 1999.PubMed/NCBI
|
23
|
Cohn SL, Pearson AD, London WB, et al:
INRG Task Force: The International Neuroblastoma Risk Group (INRG)
classification system: an INRG Task Force report. J Clin Oncol.
27:289–297. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Weiss WA, Aldape K, Mohapatra G,
Feuerstein BG and Bishop JM: Targeted expression of MYCN causes
neuroblastoma in transgenic mice. EMBO J. 16:2985–2995. 1997.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Hansford LM, Thomas WD, Keating JM, et al:
Mechanisms of embryonal tumor initiation: distinct roles for MycN
expression and MYCN amplification. Proc Natl Acad Sci USA.
101:12664–12669. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Muñoz-Velasco I, Ortíz R, Echeverría OM,
Escobar ML and Vázquez-Nin GH: Characterization of the pre-meiotic
S phase through incorporation of BrdU during spermatogenesis in the
rat. J Histochem Cytochem. 61:680–689. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pathmanathan N and Balleine RL: Ki67 and
proliferation in breast cancer. J Clin Pathol. 66:512–516. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Dubreuil V, Hirsch MR, Jouve C, Brunet JF
and Goridis C: The role of Phox2b in synchronizing pan-neuronal and
type-specific aspects of neurogenesis. Development. 129:5241–5253.
2002.PubMed/NCBI
|
29
|
Shimada H, Stram DO, Chatten J, et al:
Identification of subsets of neuroblastomas by combined
histopathologic and N-myc analysis. J Natl Cancer Inst.
87:1470–1476. 1995. View Article : Google Scholar : PubMed/NCBI
|
30
|
Egawa C and Kameda Y: Innervation of the
chicken parathyroid glands: immunohistochemical study with the
TuJ1, galanin, VIP, substance P, CGRP and tyrosine hydroxylase
antibodies. Anat Embryol (Berl). 191:445–450. 1995. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sommer L, Shah N, Rao M and Anderson DJ:
The cellular function of MASH1 in autonomic neurogenesis. Neuron.
15:1245–1258. 1995. View Article : Google Scholar : PubMed/NCBI
|
32
|
Maris JM, Hogarty MD, Bagatell R and Cohn
SL: Neuroblastoma. Lancet. 369:2106–2120. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Huang M and Weiss WA: Neuroblastoma and
MYCN. Cold Spring Harb Perspect Med. 3:a0144152013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Adhikary S and Eilers M: Transcriptional
regulation and transformation by Myc proteins. Nat Rev Mol Cell
Biol. 6:635–645. 2005. View
Article : Google Scholar : PubMed/NCBI
|
35
|
Hipp NI, Christner L, Wirth T, et al: MYCN
and survivin cooperatively contribute to malignant transformation
of fibroblasts. Carcinogenesis. 35:479–488. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Brodeur GM and Seeger RC: Gene
amplification in human neuroblastomas: basic mechanisms and
clinical implications. Cancer Genet Cytogenet. 19:101–111. 1986.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Bourdeaut F, Trochet D, Janoueix-Lerosey
I, et al: Germline mutations of the paired-like homeobox 2B
(PHOX2B) gene in neuroblastoma. Cancer Lett. 228:51–58. 2005.
View Article : Google Scholar : PubMed/NCBI
|