1
|
Farazi PA and DePinho RA: Hepatocellular
carcinoma pathogenesis: From genes to environment. Nat Rev Cancer.
6:674–687. 2006. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Forner A, Llovet JM and Bruix J:
Hepatocellular carcinoma. Lancet. 379:1245–1255. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hall A: The cellular functions of small
GTP-binding proteins. Science. 249:635–640. 1990. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li Y, Chen Y, Tao Y, Xu J and Chen M: RhoA
protein is generally distributed in the nuclei of cancer cells.
Oncol Rep. 24:1005–1009. 2010.PubMed/NCBI
|
5
|
Li Y, Chen Y and Xu J: Factors influencing
RhoA protein distribution in the nucleus. Mol Med Rep. 4:1115–1119.
2011.PubMed/NCBI
|
6
|
Dubash AD, Guilluy C, Srougi MC, Boulter
E, Burridge K and García-Mata R: The small GTPase RhoA localizes to
the nucleus and is activated by Net1 and DNA damage signals. PLoS
One. 6:e173802011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Guilluy C, Dubash AD and García-Mata R:
Analysis of RhoA and Rho GEF activity in whole cells and the cell
nucleus. Nat Protoc. 6:2050–2060. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang Y, Tu Q, Yan W, et al: CXC195
suppresses proliferation and inflammatory response in LPS-induced
human hepatocellular carcinoma cells via regulating
TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway. Biochem Biophys
Res Commun. 456:373–379. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
MacMicking J, Xie QW and Nathan C: Nitric
oxide and macrophage function. Annu Rev Immunol. 15:323–350. 1997.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Knaus UG: Rho GTPase signaling in
inflammation and transformation. Immunol Res. 21:103–109. 2000.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Wu M, Wu ZF, Rosenthal DT, Rhee EM and
Merajver SD: Characterization of the roles of RHOC and RHOA GTPases
in invasion, motility and matrix adhesion in inflammatory and
aggressive breast cancers. Cancer. 116 (Suppl):S2768–S2782. 2010.
View Article : Google Scholar
|
12
|
Hori T, Ridge RW, Tulecke W, Del Tredici
P, Tremouillaux-Guiller J and Tobe H: Ginkgo biloba - A
Global TreasureFrom Biology to Medicine. 1st. Springer; Tokyo:
1997
|
13
|
Brondino N, De Silvestri A, Re S, Lanati
N, Thiemann P, Verna A, Emanuele E and Politi P: A systematic
review and meta-analysis of Ginkgo biloba in
neuropsychiatric disorders: From ancient tradition to modern-day
medicine. Evid Based Complement Alternat Med. 2013:9156912013.
View Article : Google Scholar : PubMed/NCBI
|
14
|
von Boetticher A: Ginkgo biloba
extract in the treatment of tinnitus: A systematic review.
Neuropsychiatr Dis Treat. 7:441–447. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wu Y, He L, Zhang L, Chen J, Yi Z, Zhang
J, Liu M and Pang X: Anacardic acid (6-pentadecylsalicylic acid)
inhibits tumor angiogenesis by targeting Src/FAK/Rho GTPases
signaling pathway. J Pharmacol Exp Ther. 339:403–411. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Park YJ, Kim MJ, Kim HR, Yi MS, Chung KH
and Oh SM: Chemopreventive effects of Ginkgo biloba extract
in estrogen-negative human breast cancer cells. Arch Pharm Res.
36:102–108. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang XM, Wang YF, Li YY and Ma HL: Thermal
stability of ginkgolic acids from Ginkgo biloba and the
effects of ginkgol C17:1 on the apoptosis and migration of SMMC7721
cells. Fitoterapia. 98:66–76. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jaggy H and Koch E: Chemistry and biology
of alkylphenols from Ginkgo biloba L. Pharmazie. 52:735–738.
1997.PubMed/NCBI
|
19
|
Liu ZH and Zeng S: Cytotoxicity of
ginkgolic acid in HepG2 cells and primary rat hepatocytes. Toxicol
Lett. 187:131–136. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhou C, Li X, Du W, Feng Y, Kong X, Li Y,
Xiao L and Zhang P: Antitumor effects of ginkgolic acid in human
cancer cell occur via cell cycle arrest and decrease the Bcl-2/Bax
ratio to induce apoptosis. Chemotherapy. 56:393–402. 2010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Sotiropoulos A, Gineitis D, Copeland J and
Treisman R: Signal-regulated activation of serum response factor is
mediated by changes in actin dynamics. Cell. 98:159–169. 1999.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Kamai T, Yamanishi T, Shirataki H, Takagi
K, Asami H, Ito Y and Yoshida K: Overexpression of RhoA, Rac1 and
Cdc42 GTPases is associated with progression in testicular cancer.
Clin Cancer Res. 10:4799–4805. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Price LS and Collard JG: Regulation of the
cytoskeleton by Rho-family GTPases: Implications for tumour cell
invasion. Semin Cancer Biol. 11:167–173. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Narumiya S: The small GTPase Rho: Cellular
functions and signal transduction. J Biochem. 120:215–228. 1996.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Kennedy DO and Wightman EL: Herbal
extracts and phytochemicals: Plant secondary metabolites and the
enhancement of human brain function. Adv Nutr. 2:32–50. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Sukumari-Ramesh S, Singh N, Jensen MA,
Dhandapani KM and Vender JR: Anacardic acid induces
caspase-independent apoptosis and radiosensitizes pituitary adenoma
cells. J Neurosurg. 114:1681–1690. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee CY, Yang JJ, Lee SS, Chen CJ, Huang
YC, Huang KH and Kuan YH: Protective effect of Ginkgo biloba
leaves extract, EGb761, on endotoxin-induced acute lung injury via
a JNK- and Akt-dependent NFκB pathway. J Agric Food Chem.
62:6337–6344. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Goldie M and Dolan S: Bilobalide, a unique
constituent of Ginkgo biloba, inhibits inflammatory pain in
rats. Behav Pharmacol. 24:298–306. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wettschureck N and Offermanns S:
Rho/Rho-kinase mediated signaling in physiology and
pathophysiology. J Mol Med Berl. 80:629–638. 2002. View Article : Google Scholar : PubMed/NCBI
|