1
|
Strasser A, Harris AW, Bath ML and Cory S:
Novel primitive lymphoid tumours induced in transgenic mice by
cooperation between myc and bcl-2. Nature. 348:331–333. 1990.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Green DR and Reed JC: Mitochondria and
apoptosis. Science. 281:1309–1312. 1998. View Article : Google Scholar : PubMed/NCBI
|
3
|
Deng J, Carlson N, Takeyama K, Dal Cin P,
Shipp M and Letai A: BH3 profiling identifies three distinct
classes of apoptotic blocks to predict response to ABT-737 and
conventional chemotherapeutic agents. Cancer Cell. 12:171–185.
2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gross A, McDonnell JM and Korsmeyer SJ:
BCL-2 family members and the mitochondria in apoptosis. Genes Dev.
13:1899–1911. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Callagy GM, Pharoah PD, Pinder SE, et al:
Bcl-2 is a prognostic marker in breast cancer independently of the
Nottingham Prognostic Index. Clin Cancer Res. 12:2468–2475. 2006.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Dawson SJ, Makretsov N, Blows FM, et al:
BCL2 in breast cancer: A favourable prognostic marker across
molecular subtypes and independent of adjuvant therapy received. Br
J Cancer. 103:668–675. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tse C, Shoemaker AR, Adickes J, et al:
ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor.
Cancer Res. 68:3421–3428. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rudin CM, Hann CL, Garon EB, et al: Phase
II study of single-agent navitoclax (ABT-263) and biomarker
correlates in patients with relapsed small cell lung cancer. Clin
Cancer Res. 18:3163–3169. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kamal A, Faazil S and Malik MS:
Apoptosis-inducing agents: A patent review (2010–2013). Expert Opin
Ther Pat. 24:339–354. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hong SE, Kim EK, Jin HO, et al: S6K1
inhibition enhances tamoxifen-induced cell death in MCF-7 cells
through translational inhibition of Mcl-1 and survivin. Cell Biol
Toxicology. 29:273–282. 2013. View Article : Google Scholar
|
11
|
Bärlund M, Forozan F, Kononen J, et al:
Detecting activation of ribosomal protein S6 kinase by
complementary DNA and tissue microarray analysis. J Natl Cancer
Inst. 92:1252–1259. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Brugge J, Hung MC and Mills GB: A new
mutational AKTivation in the PI3K pathway. Cancer Cell. 12:104–107.
2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sinclair CS, Rowley M, Naderi A and Couch
FJ: The 17q23 amplicon and breast cancer. Cancer Res Treat.
78:313–322. 2003. View Article : Google Scholar
|
14
|
Kim EK, Kim JH, Kim HA, et al:
Phosphorylated S6 kinase-1: A breast cancer marker predicting
resistance to neoadjuvant chemotherapy. Anticancer Res.
33:4073–4079. 2013.PubMed/NCBI
|
15
|
Jin HO, Yoon SI, Seo SK, et al:
Synergistic induction of apoptosis by sulindac and arsenic trioxide
in human lung cancer A549 cells via reactive oxygen
species-dependent down-regulation of survivin. Biochem Pharmacol.
72:1228–1236. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lu TS, Yiao SY, Lim K, et al:
Interpretation of biological and mechanical variations between the
Lowry versus Bradford method for protein quantification. N Am J Med
Sci. 2:325–328. 2010.PubMed/NCBI
|
17
|
Jin HO, Lee YH, Kim HA, et al: Inhibition
of vacuolar H+ ATPase enhances sensitivity to tamoxifen via
up-regulation of CHOP in breast cancer cells. Biochem Biophys Res
Commun. 437:463–468. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Noh WC, Mondesire WH, Peng J, et al:
Determinants of rapamycin sensitivity in breast cancer cells. Clin
Cancer Res. 10:1013–1023. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Strasser A, Cory S and Adams JM:
Deciphering the rules of programmed cell death to improve therapy
of cancer and other diseases. EMBO J. 30:3667–3683. 2011.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Vaillant F, Merino D, Lee L, et al:
Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen
receptor-positive breast cancer. Cancer Cell. 24:120–129. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang B, Ni Z, Dai X, et al: The Bcl-2/xL
inhibitor ABT-263 increases the stability of Mcl-1 mRNA and protein
in hepatocellular carcinoma cells. Mol Cancer. 13:982014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Shoemaker AR, Mitten MJ, Adickes J, et al:
Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small
cell lung cancer xenograft models. Clin Cancer Res. 14:3268–3277.
2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ackler S, Xiao Y, Mitten MJ, et al:
ABT-263 and rapamycin act cooperatively to kill lymphoma cells in
vitro and in vivo. Mol Cancer Ther. 7:3265–3274. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lock R, Carol H, Houghton PJ, et al:
Initial testing (stage 1) of the BH3 mimetic ABT-263 by the
pediatric preclinical testing program. Pediatr Blood Cancer.
50:1181–1189. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kim EK, Kim HA, Koh JS, et al:
Phosphorylated S6K1 is a possible marker for endocrine therapy
resistance in hormone receptor-positive breast cancer. Breast
Cancer Res Treat. 126:93–99. 2011. View Article : Google Scholar : PubMed/NCBI
|