1
|
Chaturvedi S and Garcia JA: Novel agents
in the management of castration resistant prostate cancer. J
Carcinog. 13:52014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Shin SW, Kim SY and Park JW: Autophagy
inhibition enhances ursolic acid-induced apoptosis in PC3 cells.
Biochim Biophys Acta. 1823:451–457. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jácome-Pita F, Sánchez-Salas R, Barret E,
Amaruch N, Gonzalez-Enguita C and Cathelineau X: Focal therapy in
prostate cancer: the current situation. Ecancermedicalscience.
8:4352014.PubMed/NCBI
|
4
|
Franco de Oliveira R, DA Pires Oliveira
and Soares CP: Effect of low-intensity pulsed ultrasound on l929
fibroblasts. Arch Med Sci. 7:224–229. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Feng Y, Tian Z and Wan M: Bioeffects of
low-intensity ultrasound in vitro: apoptosis, protein profile
alteration and potential molecular mechanism. J Ultrasound Med.
29:963–974. 2010.PubMed/NCBI
|
6
|
Wang Y, Bai WK, Shen E and Hu B:
Sonoporation by low-frequency and low-power ultrasound enhances
chemotherapeutic efficacy in prostate cancer cells in vitro. Oncol
Lett. 6:495–498. 2013.PubMed/NCBI
|
7
|
Yang SL, Tang KQ, Bai WK, Shen E, Zhao YW,
Lin YD, Nan SL and Bing H: Effects of low-frequency ultrasound
combined with microbubbles on benign prostate hyperplasia. Can Urol
Assoc J. 7:E681–E686. 2013. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Law BY, Chan WK, Xu SW, Wang JR, Bai LP,
Liu L and Wong VK: Natural small-molecule enhancers of autophagy
induce autophagic cell death in apoptosis-defective cells. Sci Rep.
4:55102014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wei MF, Chen MW, Chen KC, Lou PJ, Lin SY,
Hung SC, Hsiao M, Yao CJ and Shieh MJ: Autophagy promotes
resistance to photodynamic therapy-induced apoptosis selectively in
colorectal cancer stem-like cells. Autophagy. 10:1179–1192. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Bai WK, Yang SL, Shen E, et al: Treatment
of PC-3 cells with ultrasound combined with microbubbles induces
distinct alterations in the expression of Bcl-2 and Bax. Chin Sci
Bull. 58:3535–3540. 2013. View Article : Google Scholar
|
11
|
Fan X, Wang J, Hou J, et al: Berberine
alleviates ox-LDL induced inflammatory factors by up-regulation of
autophagy via AMPK/mTOR signaling pathway. J Transl Med. 13:922015.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Yorimitsu T and Klionsky DJ: Autophagy:
Molecular machinery for self-eating. Cell Death Differ. 12 (Suppl
2):1542–1552. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xie Z, Nair U and Klionsky DJ: Atg8
controls phagophore expansion during autophagosome formation. Mol
Biol Cell. 19:3290–3298. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Shintani T and Klionsky DJ: Autophagy in
health and disease: Adouble-edged sword. Science. 306:990–995.
2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liang XH, Jackson S, Seaman M, Brown K,
Kempkes B, Hibshoosh H and Levine B: Induction of autophagy and
inhibition of tumorigenesis by Beclin-1. Nature. 402:672–676. 1999.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Aita VM, Liang XH, Murty VV, Pincus DL, Yu
W, Cayanis E, Kalachikov S, Gilliam TC and Levine B: Cloning and
genomic organization of Beclin-1, a candidate tumor suppressor gene
on chromosome 17q21. Genomics. 59:59–65. 1999. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tsivgoulis G, Eggers J, Ribo M, et al:
Safety and efficacy of ultrasound-enhanced thrombolysis: a
comprehensive review and meta-analysis of randomized and
nonrandomized studies. Stroke. 41:280–287. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hensel K, Mienkina MP and Schmitz G:
Analysis of ultrasound fields in cell culture wells for in vitro
ultrasound therapy experiments. Ultrasound Med Biol. 37:2105–2115.
2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Rapoport NY, Nam KH, Gao Z and Kennedy A:
Application of ultrasound for targeted nanotherapy of malignant
tumors. Acoust Phys. 55:594–601. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kawai N and Iino M: Molecular damage to
membrane proteins induced by ultrasound. Ultrasound Med Biol.
29:609–614. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Marentis TC, Kusler B, Yaralioglu GG, et
al: Microfluidic sonicator for real-time disruption of eukaryotic
cells and bacterial spores for DNA analysis. Ultrasound Med Biol.
31:1265–1277. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nyborg WL, Leighton TG, Miller D, et al:
Nonthermal issues: cavitation - its nature, detection and
measurement. Ultrasound Med Biol. 6:11–16. 1998.
|
23
|
Tabuchi Y, Takasaki I, Zhao QL, et al:
Genetic networks responsive to low-intensity pulsed ultrasound in
human lymphoma U937 cells. Cancer Lett. 270:286–294. 2008.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu WP, Shen E, Bai WK, Wang Y and Hu B:
Enhanced antitumor effects of low-frequency ultrasound and
microbubbles in combination with simvastatin by downregulating
caveolin-1 in prostatic DU145 cells. Oncol Lett. 7:2142–2148.
2014.PubMed/NCBI
|
25
|
Maruani A, Boucaud A, Perrodeau E, et al:
Low-frequency ultrasound sonophoresis to increase the efficiency of
topical steroids: a pilot randomized study of humans. Int J Pharm.
395:84–90. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu HL, Chen WS, Chen JS, et al:
Cavitation-enhanced ultrasound thermal therapy by combined low- and
high-frequency ultrasound exposure. Ultrasound Med Biol.
32:759–767. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ren ST, Liao YR, Kang XN, et al: The
antitumor effect of a new docetaxel-loaded microbubble combined
with low-frequency ultrasound in vitro: Preparation and parameter
analysis. Pharm Res. 30:1574–1585. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yang SL, Tang KQ, Bai WK, et al: Combined
low-frequency ultrasound and microbubble contrast agent for the
treatment of benign prostatic hyperplasia. J Endourol.
27:1020–1026. 2013. View Article : Google Scholar : PubMed/NCBI
|