1
|
Fillmore CM and Kuperwasser C: Human
breast cancer cell lines contain stem-like cells that self-renew,
give rise to phenotypically diverse progeny and survive
chemotherapy. Breast Cancer Res. 10:R252008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Nguyen NP, Almeida FS, Chi A, Nguyen LM,
Cohen D, Karlsson U and Vinh-Hung V: Molecular biology of breast
cancer stem cells: Potential clinical applications. Cancer Treat
Rev. 36:485–491. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pajonk F, Vlashi E and McBride WH:
Radiation resistance of cancer stem cells: The 4 R's of
radiobiology revisited. Stem Cells. 28:639–648. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kai K, Arima Y, Kamiya T and Saya H:
Breast cancer stem cells. Breast Cancer. 17:80–85. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Al-Hajj M, Wicha MS, Benito-Hernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. Proc Natl Acad Sci USA.
100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sheridan C, Kishimoto H, Fuchs RK,
Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R Jr, Badve S and
Nakshatri H: CD44+/CD24− breast cancer cells
exhibit enhanced invasive properties: An early step necessary for
metastasis. Breast Cancer Res. 8:R592006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Shipitsin M, Campbell LL, Argani P,
Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T,
Serebryiskaya T, Beroukhim R, Hu M, et al: Molecular definition of
breast tumor heterogeneity. Cancer Cell. 11:259–273. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hwang-Verslues WW, Kuo WH, Chang PH, Pan
CC, Wang HH, Tsai ST, Jeng YM, Shew JY, Kung JT, Chen CH, et al:
Multiple lineages of human breast cancer stem/progenitor cells
identified by profiling with stem cell markers. PLoS One.
4:e83772009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Harper JW and Elledge SJ: The DNA damage
response: Ten years after. Mol Cell. 28:739–745. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ackerstaff E, Glunde K and Bhujwalla ZM:
Choline phospholipid metabolism: A target in cancer cells? J Cell
Biochem. 90:525–533. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
de Ramírez Molina A, Gutiérrez R, Ramos
MA, Silva JM, Silva J, Bonilla F, Sánchez JJ and Lacal JC:
Increased choline kinase activity in human breast carcinomas:
Clinical evidence for a potential novel antitumor strategy.
Oncogene. 21:4317–4322. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Glunde K, Ackerstaff E, Natarajan K,
Artemov D and Bhujwalla ZM: Real-time changes in 1H and 31P NMR
spectra of malignant human mammary epithelial cells during
treatment with the anti-inflammatory agent indomethacin. Magn Reson
Med. 48:819–825. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hernández-Alcoceba R, Saniger L, Campos J,
Núñez MC, Khaless F, Gallo MA, Espinosa A and Lacal JC: Choline
kinase inhibitors as a novel approach for antiproliferative drug
design. Oncogene. 15:2289–2301. 1997. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rodríguez-González A, de Ramirez Molina A,
Fernández F and Lacal JC: Choline kinase inhibition induces the
increase in ceramides resulting in a highly specific and selective
cytotoxic antitumoral strategy as a potential mechanism of action.
Oncogene. 23:8247–8259. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Glunde K, Raman V, Mori N and Bhujwalla
ZM: RNA interference-mediated choline kinase suppression in breast
cancer cells induces differentiation and reduces proliferation.
Cancer Res. 65:11034–11043. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bensimon J, Altmeyer-Morel S, Benjelloun
H, Chevillard S and Lebeau J: CD24(-/low) stem-like breast cancer
marker defines the radiation-resistant cells involved in
memorization and transmission of radiation-induced genomic
instability. Oncogene. 32:251–258. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Curman D, Cinel B, Williams DE, Rundle N,
Block WD, Goodarzi AA, Hutchins JR, Clarke PR, Zhou BB, Lees-Miller
SP, et al: Inhibition of the G2 DNA damage checkpoint and of
protein kinases chkl and chk2 by the marine sponge alkaloid
debromohymenialdisine. J Biol Chem. 276:17914–17919. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Su WY and Gordon T: In vivo exposure to
ozone produces an increase in a 72-kDa heat shock protein in guinea
pigs. J Appl Physiol (1985). 83:707–711. 1997.PubMed/NCBI
|
19
|
Dittmann K, Mayer C, Fehrenbacher B,
Schaller M, Raju U, Milas L, Chen DJ, Kehlbach R and Rodemann HP:
Radiation-induced epidermal growth factor receptor nuclear import
is linked to activation of DNA-dependent protein kinase. J Biol
Chem. 280:31182–31189. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Marín L, Minguela A, Torío A, Moya-Quiles
MR, Muro M, Montes-Ares O, Parrado A, Alvarez-López DM and
García-Alonso AM: Flow cytometric quantification of apoptosis and
proliferation in mixed lymphocyte culture. Cytometry A. 51:107–118.
2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen MS, Woodward WA, Behbod F,
Peddibhotla S, Alfaro MP, Buchholz TA and Rosen JM:
Wnt/beta-catenin mediates radiation resistance of Sca1+
progenitors in an immortalized mammary gland cell line. J Cell Sci.
120:468–477. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Woodward WA, Chen MS, Behbod F, Alfaro MP,
Buchholz TA and Rosen JM: WNT/beta-catenin mediates radiation
resistance of mouse mammary progenitor cells. Proc Natl Acad Sci
USA. 104:618–623. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sansone P, Storci G, Giovannini C,
Pandolfi S, Pianetti S, Taffurelli M, Santini D, Ceccarelli C,
Chieco P and Bonafé M: p66Shc/Notch-3 interplay controls
self-renewal and hypoxia survival in human stem/progenitor cells of
the mammary gland expanded in vitro as mammospheres. Stem Cells.
25:807–815. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K
and Linn S: Molecular mechanisms of mammalian DNA repair and the
DNA damage checkpoints. Annu Rev Biochem. 73:39–85. 2004.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Xiao Z, Xue J, Semizarov D, Sowin TJ,
Rosenberg SH and Zhang H: Novel indication for cancer therapy: Chkl
inhibition sensitizes tumor cells to antimitotice. Int J Cancer.
115:528–538. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang HC, Chou WC, Shieh SY and Shen CY:
Amtaxia telangiectasia mumted and checkpoint kinase 2 regulate
BRCA1 to promote the fidelity of DNA end-joining. Cancer Res.
66:1391–1400. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhuang J, Zhang J, Willers H, Wang H,
Chung JH, van Gent DC, Hallahan DE, Powell SN and Xia F: Checkpoint
kinase 2-mediated Phosphoryiation of BRCAl regulates the fidelity
of nonhomologous end-joining. Cancer Res. 66:1401–1408. 2006.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Tan Y, Raychaudhuri P and Costa RH: Chk2
medistes stabilization of the FoxM1 transcription factor to
stimulate expression of DNA repair genes. Mol Cell Biol.
27:1007–1016. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Arienti KL, Brunmark A, Axe FU, McClure K,
Lee A, Blevitt J, Neff DK, Huang L, Crawford S, Pandit CR, et al:
Checkpoint kinase inhibitors: SAR and radioprotective properties of
aseries of 2-arylbenzimidazoles. J Med Chem. 48:1873–1885. 2005.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Bull EE, Dote H, Brady KJ, Burgan WE,
Carter DJ, Cerra MA, Oswald KA, Hollingshead MG, Camphausen K and
Tofilon PJ: Enhanced tumor cell radiosensitivity and a btogation of
G2 and S phase arrest by the Hsp90 inhibitor
17-(dimethylaminoethylamino)-17-demethoxygeldanamycin. Clin Cancer
Res. 10:8077–8084. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kastan MB and Bartek J: Cell-cycle
checkpoints and Cancer. Nature. 432:316–323. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lee JH and Paull TT: ATM activation by DNA
double-strand breaks through the Mrell-Rad50-Nbs1 complex. Science.
308:551–554. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer and cancer stem cells. Nature.
414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Shah T, Wildes F, Penet MF, Winnard PT Jr,
Glunde K, Artemov D, Ackerstaff E, Gimi B, Kakkad S, Raman V and
Bhujwalla ZM: Choline kinase overexpression increases invasiveness
and drug resistance of human breast cancer cells. NMR Biomed.
23:633–642. 2010. View Article : Google Scholar : PubMed/NCBI
|