1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yu Y, Zhang M, Zhang X, Cai Q, Hong S,
Jiang W and Xu C: Synergistic effects of combined
platelet-activating factor receptor and epidermal growth factor
receptor targeting in ovarian cancer cells. J Hematol Oncol.
7:392014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chalmers MJ, Kolch W, Emmett MR, Marshall
AG and Mischak H: Identification and analysis of phosphopeptides. J
Chromatogr B Analyt Technol Biomed Life Sci. 803:111–120. 2004.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Olsen JV, Blagoev B, Gnad F, Macek B,
Kumar C, Mortensen P and Mann M: Global, in vivo and site-specific
phosphorylation dynamics in signaling networks. Cell. 127:635–648.
2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ballif BA, Roux PP, Gerber SA, MacKeigan
JP, Blenis J and Gygi SP: Quantitative phosphorylation profiling of
the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets,
the tuberous sclerosis tumor suppressors. Proc Natl Acad Sci USA.
102:667–672. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hoffert JD, Pisitkun T, Wang G, Shen RF
and Knepper MA: Quantitative phosphoproteomics of
vasopressin-sensitive renal cells: Regulation of aquaporin-2
phosphorylation at two sites. Proc Natl Acad Sci USA.
103:7159–7164. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang F, Stenoien DL, Strittmatter EF, Wang
J, Ding L, Lipton MS, Monroe ME, Nicora CD, Gristenko MA, Tang K,
et al: Phosphoproteome profiling of human skin fibroblast cells in
response to low- and high-dose irradiation. J Proteome Res.
5:1252–1260. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ham BM, Jayachandran H, Yang F, Jaitly N,
Polpitiya AD, Monroe ME, Wang L, Zhao R, Purvine SO, Livesay EA, et
al: Novel Ser/Thr protein phosphatase 5 (PP5) regulated targets
during DNA damage identified by proteomics analysis. J Proteome
Res. 9:945–953. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yamaguchi F, Umeda Y, Shimamoto S,
Tsuchiya M, Tokumitsu H, Tokuda M and Kobayashi R: S100 proteins
modulate protein phosphatase 5 function: a link between CA2+ signal
transduction and protein dephosphorylation. J Biol Chem.
287:13787–13798. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen MX, McPartlin AE, Brown L, Chen YH,
Barker HM and Cohen PT: A novel human protein serine/threonine
phosphatase, which possesses four tetratricopeptide repeat motifs
and localizes to the nucleus. EMBO J. 13:4278–4290. 1994.PubMed/NCBI
|
11
|
Connarn JN, Assimon VA, Reed RA, Tse E,
Southworth DR, Zuiderweg ER, Gestwicki JE and Sun D: The molecular
chaperone Hsp70 activates protein phosphatase 5 (PP5) by binding
the tetratricopeptide repeat (TPR) domain. J Biol Chem.
289:2908–2917. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
von Kriegsheim A, Pitt A, Grindlay GJ,
Kolch W and Dhillon AS: Regulation of the Raf-MEK-ERK pathway by
protein phosphatase 5. Nat Cell Biol. 8:1011–1016. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zuo Z, Urban G, Scammell JG, Dean NM,
McLean TK, Aragon I and Honkanen RE: Ser/Thr protein phosphatase
type 5 (PP5) is a negative regulator of glucocorticoid
receptor-mediated growth arrest. Biochemistry. 38:8849–8857. 1999.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zuo Z, Dean NM and Honkanen RE:
Serine/threonine protein phosphatase type 5 acts upstream of p53 to
regulate the induction of p21(WAF1/Cip1) and mediate growth arrest.
J Biol Chem. 273:12250–12258. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chinkers M: Targeting of a distinctive
protein-serine phosphatase to the protein kinase-like domain of the
atrial natriuretic peptide receptor. Proc Natl Acad Sci USA.
91:11075–11079. 1994. View Article : Google Scholar : PubMed/NCBI
|
16
|
Silverstein AM, Galigniana MD, Chen MS,
Owens-Grillo JK, Chinkers M and Pratt WB: Protein phosphatase 5 is
a major component of glucocorticoid receptor hsp90 complexes with
properties of an FK506-binding immunophilin. J Biol Chem.
272:16224–16230. 1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Davies TH, Ning YM and Sánchez ER:
Differential control of glucocorticoid receptor hormone-binding
function by tetratricopeptide repeat (TPR) proteins and the
immunosuppressive ligand FK506. Biochemistry. 44:2030–2038. 2005.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Urban G, Golden T, Aragon IV, Scammell JG,
Dean NM and Honkanen RE: Identification of an estrogen-inducible
phosphatase (PP5) that converts MCF-7 human breast carcinoma cells
into an estrogen-independent phenotype when expressed
constitutively. J Biol Chem. 276:27638–27646. 2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Golden T, Aragon IV, Zhou G, Cooper SR,
Dean NM and Honkanen RE: Constitutive over expression of
serine/threonine protein phosphatase 5 (PP5) augments
estrogen-dependent tumor growth in mice. Cancer Lett. 215:95–100.
2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ali MW, Cacan E, Liu Y, Pierce JY,
Creasman WT, Murph MM, Govindarajan R, Eblen ST, Greer SF and Hooks
SB: Transcriptional suppression, DNA methylation and histone
deacetylation of the regulator of G-protein signaling 10 (RGS10)
gene in ovarian cancer cells. PloS one. 8:e601852013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chinkers M: Protein phosphatase 5 in
signal transduction. Trends Endocrinol Metab. 12:28–32. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Yong W, Bao S, Chen H, Li D, Sánchez ER
and Shou W: Mice lacking protein phosphatase 5 are defective in
ataxia telangiectasia mutated (ATM)-mediated cell cycle arrest. J
Biol Chem. 282:14690–14694. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhou G, Golden T, Aragon IV and Honkanen
RE: Ser/Thr protein phosphatase 5 inactivates hypoxia-induced
activation of an apoptosis signal-regulating kinase 1/MKK-4/JNK
signaling cascade. J Biol Chem. 279:46595–46605. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Huang S, Shu L, Easton J, Harwood FC,
Germain GS, Ichijo H and Houghton PJ: Inhibition of mammalian
target of rapamycin activates apoptosis signal-regulating kinase 1
signaling by suppressing protein phosphatase 5 activity. J Biol
Chem. 279:36490–36496. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Urban G, Golden T, Aragon IV, Cowsert L,
Cooper SR, Dean NM and Honkanen RE: Identification of a functional
link for the p53 tumor suppressor protein in dexamethasone-induced
growth suppression. J Biol Chem. 278:9747–9753. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wechsler T, Chen BP, Harper R,
Morotomi-Yano K, Huang BC, Meek K, Cleaver JE, Chen DJ and Wabl M:
DNA-PKcs function regulated specifically by protein phosphatase 5.
Proc Natl Acad Sci USA. 101:1247–1252. 2004. View Article : Google Scholar : PubMed/NCBI
|