1
|
Robert V, Michel P, Flaman JM, et al: High
frequency in esophageal cancers of p53 alterations inactivating the
regulation of genes involved in cell cycle and apoptosis.
Carcinogenesis. 21:563–565. 2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Nishiwaki T, Daigo Y, Kawasoe T and
Nakamura Y: Isolation and mutational analysis of a novel human
cDNA, DEC1 (deleted in esophageal cancer 1), derived from the tumor
suppressor locus in 9q32. Genes Chromosomes Cancer. 27:169–176.
2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Miyake S, Nagai K, Yoshino K, Oto M, Endo
M and Yuasa Y: Point mutations and allelic deletion of tumor
suppressor gene DCC in human esophageal squamous cell carcinomas
and their relation to metastasis. Cancer Res. 54:3007–3010.
1994.PubMed/NCBI
|
4
|
Daigo Y, Nishiwaki T, Kawasoe T, et al:
Molecular cloning of a candidate tumor suppressor gene, DLC1, from
chromosome 3p21.3. Cancer Res. 59:1966–1972. 1999.PubMed/NCBI
|
5
|
Jiang W, Zhang YJ, Kahn SM, et al: Altered
expression of the cyclin D1 and retinoblastoma genes in human
esophageal cancer. Proc Natl Acad Sci USA. 90:9026–9030. 1993.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Boynton RF, Blount PL, Yin J, et al: Loss
of heterozygosity involving the APC and MCC genetic loci occurs in
the majority of human esophageal cancers. Proc Natl Acad Sci USA.
89:3385–3388. 1992. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kato J, Kuwabara Y, Mitani M, et al:
Expression of survivin in esophageal cancer: Correlation with the
prognosis and response to chemotherapy. Int J Cancer. 95:92–95.
2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kastan MB, Zhan Q, el-Deiry WS, et al: A
mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is
defective in ataxia-telangiectasia. Cell. 71:587–597. 1992.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Smith ML, Chen IT, Zhan Q, et al:
Interaction of the p53-regulated protein Gadd45 with proliferating
cell nuclear antigen. Science. 266:1376–1380. 1994. View Article : Google Scholar : PubMed/NCBI
|
10
|
Marx J: New link found between p53 and DNA
repair. Science. 266:1321–1322. 1994. View Article : Google Scholar : PubMed/NCBI
|
11
|
McGregor JM, Yu CC, Dublin EA, et al:
Aberrant expression of p53 tumour-suppressor protein in
non-melanoma skin cancer. Br J Dermatol. 127:463–469. 1992.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Japan Esophageal Society: Japanese
Classification Esophageal Cancer. (Tenth). Part 1. Esophagus.
6:1–25. 2009. View Article : Google Scholar
|
13
|
Yamasawa K, Nio Y, Dong M, Yamaguchi K and
Itakura M: Clinicopathological significance of abnormalities in
Gadd45 expression and its relationship to p53 in human pancreatic
cancer. Clin Cancer Res. 8:2563–2569. 2002.PubMed/NCBI
|
14
|
Carrier F, Bae I, Smith ML, Ayers DM and
Fornace AJ Jr: Characterization of the GADD45 response to ionizing
radiation in WI-L2-NS cells, a p53 mutant cell line. Mutat Res.
352:79–86. 1996. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hollander MC, Sheikh MS, Bulavin DV, et
al: Genomic instability in Gadd45a-deficient mice. Nat Genet.
23:176–184. 1999. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Shurbaji MS, Kalbfleisch JH and Thurmond
TS: Immunohistochemical detection of p53 protein as a prognostic
indicator in prostate cancer. Hum Pathol. 26:106–109. 1995.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Yen CC, Tsao YP, Chen PC, et al: PML
protein as a prognostic molecular marker for patients with
esophageal squamous cell carcinomas receiving primary surgery. J
Surg Oncol. 103:761–767. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu WK, Jiang XY, Zhang MP and Zhang ZX:
The relationship between HPV16 and expression of cyclooxygenase-2,
P53 and their prognostic roles in esophageal squamous cell
carcinoma. Eur J Gastroenterol Hepatol. 22:67–74. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Vikhanskaya F, Lee MK, Mazzoletti M, et
al: Cancer-derived p53 mutants suppress p53-target gene
expression-potential mechanism for gain of function of mutant p53.
Nucleic Acids Res. 35:2093–2104. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jackson JG and Pereira-Smith OM: p53 is
preferentially recruited to the promoters of growth arrest genes
p21 and GADD45 during replicative senescence of normal human
fibroblasts. Cancer Res. 66:8356–8360. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Butz K, Whitaker N, Denk C, et al:
Induction of the p53-target gene GADD45 in HPV-positive cancer
cells. Oncogene. 18:2381–2386. 1999. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang B, Yin BL, He B, et al:
Overexpression of DNA damage-induced 45 alpha gene contributes to
esophageal squamous cell cancer by promoter hypomethylation. J Exp
Clin Cancer Res. 31:112012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Amente S, Zhang J, Lavadera ML, Lania L,
Avvedimento EV and Majello B: Myc and PI3K/AKT signaling
cooperatively repress FOXO3a-dependent PUMA and GADD45a gene
expression. Nucleic Acids Res. 39:9498–9507. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhu QS, Ren W, Korchin B, et al: Soft
tissue sarcoma cells are highly sensitive to AKT blockade: A role
for p53-independent up-regulation of GADD45 alpha. Cancer Res.
68:2895–2903. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Maekawa T, Sano Y, Shinagawa T, et al:
ATF-2 controls transcription of Maspin and GADD45 alpha genes
independently from p53 to suppress mammary tumors. Oncogene.
27:1045–1054. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yoshida T, Maeda A, Horinaka M, et al:
Quercetin induces gadd45 expression through a p53-independent
pathway. Oncol Rep. 14:1299–1303. 2005.PubMed/NCBI
|
27
|
Kuerbitz SJ, Plunkett BS, Walsh WV and
Kastan MB: Wild-type p53 is a cell cycle checkpoint determinant
following irradiation. Proc Natl Acad Sci USA. 89:7491–7495. 1992.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Maity A, McKenna WG and Muschel RJ: The
molecular basis for cell cycle delays following ionizing radiation:
A review. Radiother Oncol. 31:1–13. 1994. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang XW, Zhan Q, Coursen JD, Khan MA,
Kontny HU, Yu L, Hollander MC, O'Connor PM, Fornace AJ Jr and
Harris CC: GADD45 induction of a G2/M cell cycle checkpoint. Proc
Natl Acad Sci USA. 96:3706–3711. 1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Amundson SA, Myers TG, Scudiero D, Kitada
S, Reed JC and Fornace AJ Jr: An informatics approach identifying
markers of chemosensitivity in human cancer cell lines. Cancer Res.
60:6101–6110. 2000.PubMed/NCBI
|
31
|
Santucci MA, Barbieri E, Frezza G, Perrone
A, Iacurti E, Galuppi A, Salvi F, Bunkeila F, Neri S, Putti C, et
al: Radiation-induced gadd45 expression correlates with clinical
response to radiotherapy of cervical carcinoma. Int J Radiat Oncol
Biol Phys. 46:411–416. 2000. View Article : Google Scholar : PubMed/NCBI
|
32
|
Harkin DP, Bean JM, Miklos D, Song YH,
Truong VB, Englert C, Christians FC, Ellisen LW, Maheswaran S,
Oliner JD, et al: Induction of GADD45 and JNK/SAPK-dependent
apoptosis following inducible expression of BRCA1. Cell.
97:575–586. 1999. View Article : Google Scholar : PubMed/NCBI
|
33
|
Guo W, Dong Z, Guo Y, Chen Z, Kuang G and
Yang Z: Methylation-mediated repression of GADD45A and GADD45G
expression in gastric cardia adenocarcinoma. Int J Cancer.
133:2043–2053. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hofler H, Langer R, Ott K and Keller G:
Prediction of response to neoadjuvant chemotherapy in carcinomas of
the upper gastrointestinal tract. Recent Results Cancer Res.
176:33–36. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Langer R, Specht K, Becker K, Ewald P,
Bekesch M, Sarbia M, Busch R, Feith M, Stein HJ, Siewert JR, et al:
Association of pretherapeutic expression of chemotherapy-related
genes with response to neoadjuvant chemotherapy in Barrett
carcinoma. Clin Cancer Res. 11:7462–7469. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Papathanasiou MA, Kerr NC, Robbins JH,
McBride OW, Alamo I Jr, Barrett SF, Hickson ID and Fornace AJ Jr:
Induction by ionizing radiation of the gadd45 gene in cultured
human cells: Lack of mediation by protein kinase C. Mol Cell Biol.
11:1009–1016. 1991. View Article : Google Scholar : PubMed/NCBI
|
37
|
Barbashina V, Salazar P, Holland EC,
Rosenblum MK and Ladanyi M: Allelic losses at 1p36 and 19q13 in
gliomas: Correlation with histologic classification, definition of
a 150-kb minimal deleted region on 1p36 and evaluation of CAMTA1 as
a candidate tumor suppressor gene. Clin Cancer Res. 11:1119–1128.
2005.PubMed/NCBI
|
38
|
Girard L, Zöchbauer-Müller S, Virmani AK,
Gazdar AF and Minna JD: Genome-wide allelotyping of lung cancer
identifies new regions of allelic loss, differences between small
cell lung cancer and non-small cell lung cancer and loci
clustering. Cancer Res. 60:4894–4906. 2000.PubMed/NCBI
|
39
|
Igarashi J, Nimura Y, Fujimori M, Mihara
M, Adachi W, Kageyama H and Nakagawara A: Allelic loss of the
region of chromosome 1p35-pter is associated with progression of
human gastric carcinoma. Jpn J Cancer Res. 91:797–801. 2000.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Itami A, Shimada Y, Watanabe G and Imamura
M: Prognostic value of p27 (Kip1) and CyclinD1 expression in
esophageal cancer. Oncology. 57:311–317. 1999. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shimada Y, Imamura M, Shibagaki I, Tanaka
H, Miyahara T, Kato M and Ishizaki K: Genetic alterations in
patients with esophageal cancer with short- and long-term survival
rates after curative esophagectomy. Ann Surg. 226:162–168. 1997.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Shibata Y, Haruki N, Kuwabara Y, Nishiwaki
T, Kato J, Shinoda N, Sato A, Kimura M, Koyama H, Toyama T, et al:
Expression of PTTG (pituitary tumor transforming gene) in
esophageal cancer. Jpn J Clin Oncol. 32:233–237. 2002. View Article : Google Scholar : PubMed/NCBI
|
43
|
Konishi S, Ishiguro H, Shibata Y, Kudo J,
Terashita Y, Sugiura H, Koyama H, Kimura M, Sato A, Shinoda N, et
al: Decreased expression of DFF45/ICAD is correlated with a poor
prognosis in patients with esophageal carcinoma. Cancer.
95:2473–2478. 2002. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sugito N, Ishiguro H, Kuwabara Y, Kimura
M, Mitsui A, Kurehara H, Ando T, Mori R, Takashima N, Ogawa R, et
al: RNASEN regulates cell proliferation and affects survival in
esophageal cancer patients. Clin Cancer Res. 12:7322–7328. 2006.
View Article : Google Scholar : PubMed/NCBI
|